An Empirical Mass Function Distribution

被引:3
|
作者
Murray, S. G. [1 ,2 ,3 ]
Robotham, A. S. G. [1 ]
Power, C. [1 ,2 ]
机构
[1] Univ Western Australia, ICRAR, Crawley, WA 6009, Australia
[2] ARC Ctr Excellence All Sky Astrophys, Canberra, ACT, Australia
[3] Curtin Univ, ICRAR, Bentley, WA 6102, Australia
来源
ASTROPHYSICAL JOURNAL | 2018年 / 855卷 / 01期
基金
澳大利亚研究理事会;
关键词
dark matter; galaxies: halos; methods: analytical; methods: statistical; DARK-MATTER HALOES; STELLAR MASS; GALAXY FORMATION; ASSEMBLY GAMA; LUMINOSITY; CONDENSATION; COSMOLOGY; REDSHIFT; NUMBER; MODEL;
D O I
10.3847/1538-4357/aaa552
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The halo mass function, encoding the comoving number density of dark matter halos of a given mass, plays a key role in understanding the formation and evolution of galaxies. As such, it is a key goal of current and future deep optical surveys to constrain the mass function down to mass scales that typically host L-star galaxies. Motivated by the proven accuracy of Press-Schechter-type mass functions, we introduce a related but purely empirical form consistent with standard formulae to better than 4% in the medium-mass regime, 10(10)-10(13) h(-1)M(circle dot). In particular, our form consists of four parameters, each of which has a simple interpretation, and can be directly related to parameters of the galaxy distribution, such as L-star. Using this form within a hierarchical Bayesian likelihood model, we show how individual mass-measurement errors can be successfully included in a typical analysis, while accounting for Eddington bias. We apply our form to a question of survey design in the context of a semi-realistic data model, illustrating how it can be used to obtain optimal balance between survey depth and angular coverage for constraints on mass function parameters. Open-source Python and R codes to apply our new form are provided at. http://mrpy. readthedocs.org. and. https://cran.r-project.org/web/packages/tggd/index.html respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the convergence of the empirical mass function
    Russo, Ralph P.
    Shyamalkumar, Nariankadu D.
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (15) : 2293 - 2299
  • [2] THE ADMISSIBILITY OF THE EMPIRICAL DISTRIBUTION FUNCTION
    COHEN, MP
    KUO, L
    [J]. ANNALS OF STATISTICS, 1985, 13 (01): : 262 - 271
  • [4] Empirical Determination of the Pion Mass Distribution
    徐胤禛
    K.Raya
    崔著钫
    C.D.Roberts
    J.Rodríguez-Quintero
    [J]. Chinese Physics Letters, 2023, (04) : 14 - 20
  • [5] Empirical Determination of the Pion Mass Distribution
    徐胤禛
    KRaya
    崔著钫
    CDRoberts
    JRodrguezQuintero
    [J]. Chinese Physics Letters., 2023, 40 (04) - 20
  • [6] Empirical Determination of the Pion Mass Distribution
    Xu, Y. -Z
    Raya, K.
    Cui, Z. -F
    Roberts, C. D.
    Rodriguez-Quintero, J.
    [J]. CHINESE PHYSICS LETTERS, 2023, 40 (04)
  • [8] THE LIMIT DISTRIBUTION OF THE CONCAVE MAJORANT OF AN EMPIRICAL DISTRIBUTION DISTRIBUTION FUNCTION
    WANG, YZ
    [J]. STATISTICS & PROBABILITY LETTERS, 1994, 20 (01) : 81 - 84
  • [9] LINEAR BOUNDS ON EMPIRICAL DISTRIBUTION FUNCTION
    SHORACK, GR
    WELLNER, JA
    [J]. ANNALS OF PROBABILITY, 1978, 6 (02): : 349 - 353
  • [10] Minimax Prediction of the Empirical Distribution Function
    Jokiel-Rokita, Alicja
    Magiera, Ryszard
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (11) : 1776 - 1791