Sharp Function Estimates for Bilinear Pseudo-Differential Operators

被引:0
|
作者
Wang, Guangqing [1 ]
Li, Jinhui [1 ]
机构
[1] Fuyang Normal Univ, Sch Math & Stat, Fuyang 236041, Anhui, Peoples R China
关键词
Bilinear pseudo-differential operators; Sharp maximal operator; WEIGHTED NORM INEQUALITIES; HORMANDER CLASSES; TRIEBEL-LIZORKIN; SYMBOLS; BOUNDEDNESS;
D O I
10.1007/s41980-022-00722-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0 < rho < 1 and T-a be a bilinear pseudo-differential operator defined by the symbol a epsilon BS rho,rho-n(1- rho) .It is shown that the operator T-a obeys the following pointwise estimate M (#) (Ta( f, g))(x) <= CMp f (x) M(q)g(x) for all x epsilon R-n if 2 < p, q < infinity and 1/p + 1/q = 1/2. Here M-# denotes the FeffermanStein sharp operator and M-p stands for the generalized Hardy-Littlewood maximal operator.
引用
收藏
页码:3795 / 3807
页数:13
相关论文
共 50 条