BOSE-EINSTEIN CONDENSATION BEYOND MEAN FIELD: MANY-BODY BOUND STATE OF PERIODIC MICROSTRUCTURE

被引:5
|
作者
Margetis, Dionisios [1 ,2 ]
机构
[1] Univ Maryland, Dept Math, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[2] Univ Maryland, Ctr Sci Computat & Math Modeling, College Pk, MD 20742 USA
来源
MULTISCALE MODELING & SIMULATION | 2012年 / 10卷 / 02期
基金
美国国家科学基金会;
关键词
Bose-Einstein condensation; homogenization; many-body perturbation theory; two-scale expansion; singular perturbation; mean field limit; bound state; NONLINEAR SCHRODINGER-EQUATION; GROSS-PITAEVSKII EQUATION; HARTREE-FOCK THEORY; SCATTERING THEORY; HARD SPHERES; LIMIT; GAS; TEMPERATURE; DERIVATION; EXISTENCE;
D O I
10.1137/110826576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study stationary quantum fluctuations around a mean field limit in trapped, dilute atomic gases of repulsively interacting bosons at zero temperature. Our goal is to describe quantum-mechanically the lowest macroscopic many-body bound state consistent with a microscopic Hamiltonian that accounts for inhomogeneous particle scattering processes. In the mean field limit, the wave function of the condensate (macroscopic quantum state) satisfies a defocusing cubic nonlinear Schrodinger-type equation, the Gross-Pitaevskii equation. We include consequences of pair excitation, i.e., the scattering of particles in pairs from the condensate to other states, proposed in [T. T. Wu, J. Math. Phys., 2 (1961), pp. 105-123]. Our derivations rely on an uncontrolled yet physically motivated assumption for the many-body wave function. By relaxing mathematical rigor, from a particle Hamiltonian with a spatially varying interaction strength we derive via heuristics an integro-partial differential equation for the pair collision kernel, K, under a stationary condensate wave function, Phi. For a scattering length with periodic microstructure of subscale epsilon, we formally describe via classical homogenization the lowest many-body bound state in terms of Phi and K up to second order in epsilon. If the external potential is slowly varying, we solve the homogenized equations via boundary layer theory. As an application, we describe the partial depletion of the condensate.
引用
收藏
页码:383 / 417
页数:35
相关论文
共 50 条
  • [1] BOSE-EINSTEIN CONDENSATION BEYOND MEAN FIELD: MANY-BODY BOUND STATE OF PERIODIC MICROSTRUCTURE (vol 10, pg 383, 2012)
    Margetis, Dionisios
    MULTISCALE MODELING & SIMULATION, 2013, 11 (01): : 410 - 410
  • [3] Quantum many-body theory of coherent output of Bose-Einstein condensation (Ⅰ)——Factorization and atom coherence
    孙昌璞
    苗元秀
    战鹤
    李建明
    Progress in Natural Science:Materials International, 1999, (06) : 3 - 5
  • [4] Many-body rate limit on photoassociation of a Bose-Einstein condensate
    Mackie, Matt
    Phou, Pierre
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [5] Control of decoherence of many-body excitations in a Bose-Einstein Condensate
    Bar-Gill, N.
    Rowen, E.E.
    Pugatch, R.
    Kurizki, G.
    Davidson, N.
    Optics InfoBase Conference Papers, 2008,
  • [6] Control of Decoherence of Many-Body Excitations in a Bose-Einstein Condensate
    Bar-Gill, N.
    Rowen, E. E.
    Pugatch, R.
    Kurizki, G.
    Davidson, N.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3317 - 3318
  • [7] Nonperturbative dynamical many-body theory of a Bose-Einstein condensate
    Gasenzer, T
    Berges, J
    Schmidt, MG
    Seco, M
    PHYSICAL REVIEW A, 2005, 72 (06):
  • [8] Quantum many-body theory of coherent output of Bose-Einstein condensation (I) Factorization and atom coherence
    Sun, CP
    Miao, YX
    Zhan, H
    Li, JM
    PROGRESS IN NATURAL SCIENCE, 1999, 9 (06) : 416 - 424
  • [9] MANY-BODY PROBLEM IN QUANTUM STATISTICAL MECHANICS .5. DEGENERATE PHASE IN BOSE-EINSTEIN CONDENSATION
    LEE, TD
    YANG, CN
    PHYSICAL REVIEW, 1960, 117 (04): : 897 - 920
  • [10] Bose-Einstein condensation and many-body localization of rotational excitations of polar molecules following a microwave pulse
    Kwasigroch, M. P.
    Cooper, N. R.
    PHYSICAL REVIEW A, 2014, 90 (02):