Multinomial Principal Component Logistic Regression on Shape Data

被引:5
|
作者
Moghimbeygi, Meisam [1 ]
Nodehi, Anahita [2 ]
机构
[1] Kharazmi Univ, Dept Math, Fac Math & Comp Sci, KhU, 43 South Mofatteh Ave, Tehran, Iran
[2] Univ Florence, Dept Stat, Comp Sci, Applicat Giuseppe Parenti, Viale Morgagni 59, I-50134 Florence, Italy
关键词
Shape data; Multinomial logistic regression; Tangent space; Classification; 62Hxx; POINT SETS; COMPLEX; MANIFOLDS; NUMBER;
D O I
10.1007/s00357-022-09423-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a linear model that uses the principal component scores in shape data and fits the nominal responses in the tangent space of shapes. Multinomial logistic regression for multivariate data and logistic regression for binary responses are considered in this regard. Principal components in the tangent space are employed to improve the estimation of logistic model parameters under multicollinearity and to reduce the dimension of the input data. This paper improves the classification of shape data according to their different nominal groups. Furthermore, we assess the effectiveness of the proposed method using a comprehensive simulation and highlight the benefits of the new method using five real-world data sets.
引用
收藏
页码:578 / 599
页数:22
相关论文
共 50 条
  • [1] Multinomial Principal Component Logistic Regression on Shape Data
    Meisam Moghimbeygi
    Anahita Nodehi
    Journal of Classification, 2022, 39 : 578 - 599
  • [2] Modeling environmental data by functional principal component logistic regression
    Escabias, M
    Aguilera, AM
    Valderrama, MJ
    ENVIRONMETRICS, 2005, 16 (01) : 95 - 107
  • [3] Robust Logistic Principal Component Regression for Classification of Data in presence of Outliers
    Wu, H. C.
    Chan, S. C.
    Tsui, K. M.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012,
  • [4] Robust Principal Component Functional Logistic Regression
    Denhere, Melody
    Billor, Nedret
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (01) : 264 - 281
  • [5] Logistic Regression Classification by Principal Component Selection
    Kim, Kiho
    Lee, Seokho
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2014, 21 (01) : 61 - 68
  • [6] Multinomial logistic regression
    Kwak, C
    Clayton-Matthews, A
    NURSING RESEARCH, 2002, 51 (06) : 406 - 412
  • [7] Confidence intervals for multinomial logistic regression in sparse data
    Bull, Shelley B.
    Lewinger, Juan Pablo
    Lee, Sophia S. F.
    STATISTICS IN MEDICINE, 2007, 26 (04) : 903 - 918
  • [8] Principal component multinomial regression and spectrometry to predict soil texture
    Lucadamo, Antonio
    Leone, Antonio
    JOURNAL OF CHEMOMETRICS, 2015, 29 (09) : 514 - 520
  • [9] Multinomial Logistic Regression Ensembles
    Lee, Kyewon
    Ahn, Hongshik
    Moon, Hojin
    Kodell, Ralph L.
    Chen, James J.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2013, 23 (03) : 681 - 694
  • [10] Multinomial and ordinal logistic regression
    Sainani, Kristin L.
    PM&R, 2021, 13 (09) : 1050 - 1055