Controllable Reset Behavior in Domain Wall-Magnetic Tunnel Junction Artificial Neurons for Task-Adaptable Computation

被引:10
|
作者
Liu, Samuel [1 ]
Bennett, Christopher H. [2 ]
Friedman, Joseph S. [3 ]
Marinella, Matthew J. [2 ]
Paydarfar, David [4 ]
Incorvia, Jean Anne C. [1 ]
机构
[1] Univ Texas, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Sandia Natl Labs, Albuquerque, NM 87123 USA
[3] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
[4] Univ Texas Austin, Dept Neurol, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Spin electronics; domain wall dynamics; magnetic logic devices; magnetic tunnel junctions; neuromorphic computing; MODEL;
D O I
10.1109/LMAG.2021.3069666
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Neuromorphic computing with spintronic devices has been of interest due to the limitations of CMOS-driven von Neumann computing. Domain wall-magnetic tunnel junction (DW-MTJ) devices have been shown to be able to intrinsically capture biological neuron behavior. Edgy-relaxed behavior, where a frequently firing neuron experiences a lower action potential threshold, may provide additional artificial neuronal functionality when executing repeated tasks. In this letter, we demonstrate that this behavior can be implemented in DW-MTJ artificial neurons via three alternative mechanisms: shape anisotropy, magnetic field, and current-driven soft reset. Using micromagnetics and analytical device modeling to classify the Optdigits handwritten digit dataset, we show that edgy-relaxed behavior improves both classification accuracy and classification rate for ordered datasets while sacrificing little to no accuracy for a randomized dataset. This letter establishes methods by which artificial spintronic neurons can be flexibly adapted to datasets.
引用
收藏
页数:5
相关论文
共 7 条
  • [1] Stochastic domain wall-magnetic tunnel junction artificial neurons for noise-resilient spiking neural networks
    Leonard, Thomas
    Liu, Samuel
    Jin, Harrison
    Incorvia, Jean Anne C.
    APPLIED PHYSICS LETTERS, 2023, 122 (26)
  • [2] Energy and Performance Benchmarking of a Domain Wall-Magnetic Tunnel Junction Multibit Adder
    Xiao, T. Patrick
    Bennett, Christopher H.
    Hu, Xuan
    Feinberg, Ben
    Jacobs-Gedrim, Robin
    Agarwal, Sapan
    Brunhaver, John S.
    Friedman, Joseph S.
    Incorvia, Jean Anne C.
    Marinella, Matthew J.
    IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2019, 5 (02): : 188 - 196
  • [3] Process Variation Model and Analysis for Domain Wall-Magnetic Tunnel Junction Logic
    Hu, Xuan
    Edwards, Alexander J.
    Xiao, T. Patrick
    Bennett, Christopher H.
    Incorvia, Jean Anne C.
    Marinella, Matthew J.
    Friedman, Joseph S.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [4] A domain wall-magnetic tunnel junction artificial synapse with notched geometry for accurate and efficient training of deep neural networks
    Liu, Samuel
    Xiao, T. Patrick
    Cui, Can
    Incorvia, Jean Anne C.
    Bennett, Christopher H.
    Marinella, Matthew J.
    APPLIED PHYSICS LETTERS, 2021, 118 (20)
  • [5] Domain Wall-Magnetic Tunnel Junction Analog Content Addressable Memory Using Current and Projected Data
    Jin, Harrison
    Zhu, Hanqing
    Zhu, Keren
    Leonard, Thomas
    Kwon, Jaesuk
    Alamdar, Mahshid
    Kim, Kwangseok
    Park, Jungsik
    Hase, Naoki
    Pan, David Z.
    Incorvia, Jean Anne C.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2024, 23 : 20 - 28
  • [6] Domain wall-magnetic tunnel junction spin-orbit torque devices and circuits for in-memory computing
    Alamdar, Mahshid
    Leonard, Thomas
    Cui, Can
    Rimal, Bishweshwor P.
    Xue, Lin
    Akinola, Otitoaleke G.
    Xiao, T. Patrick
    Friedman, Joseph S.
    Bennett, Christopher H.
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    APPLIED PHYSICS LETTERS, 2021, 118 (11)
  • [7] Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware
    Liu, Long
    Wang, Di
    Wang, Dandan
    Sun, Yan
    Lin, Huai
    Gong, Xiliang
    Zhang, Yifan
    Tang, Ruifeng
    Mai, Zhihong
    Hou, Zhipeng
    Yang, Yumeng
    Li, Peng
    Wang, Lan
    Luo, Qing
    Li, Ling
    Xing, Guozhong
    Liu, Ming
    NATURE COMMUNICATIONS, 2024, 15 (01)