Arabic handwritten characters classification using Learning Vector Quantization algorithm

被引:0
|
作者
Ali, Mohamed A. [1 ]
机构
[1] Sebha Univ, Fac Sci, Dept Comp Sci, Sebha, Libya
来源
IMAGE AND SIGNAL PROCESSING | 2008年 / 5099卷
关键词
Arabic handwritten recognition; neural network; classification; character recognition;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this module, Learning Vector Quantization LVQ neural network is first time, introduced as a classifier for Arabic handwritten character. Classification has been performed in two different strategies, in first strategy, we use one classifier for all 53 Arabic Character Basic Shapes CBSs in training and testing phases, in second strategy we use three classifiers for three subsets of 53 Arabic CBSs, the three subsets of Arabic CBSs are; ascending CBSs, descending CBSs and embedded CBSs. Three training algorithms; OLVQ1, LVQ2 and LVQ3 were examined and OLVQ1 found as the best learning algorithm.
引用
收藏
页码:463 / 470
页数:8
相关论文
共 50 条
  • [1] Learning Vector Quantization algorithm as classifier for Arabic handwritten characters recognition
    Ali, Mohamed A.
    Bin Jumari, Kasmiran
    Samad, Salina Abd.
    [J]. PROCEEDINGS OF THE 6TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED COMPUTER SCIENCE, 2007, : 240 - +
  • [2] High speed rough classification for handwritten characters using hierarchical learning vector quantization
    Waizumi, Y
    Kato, N
    Saruta, K
    Nemoto, Y
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, 1997, : 23 - 27
  • [3] High speed and high accuracy rough classification for handwritten characters using hierarchical learning vector quantization
    Waizumi, Y
    Kato, N
    Saruta, K
    Nemoto, Y
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2000, E83D (06) : 1282 - 1290
  • [4] Guided classification for Arabic Characters handwritten Recognition
    Fakhet, Walid
    El Khediri, Salim
    Zidi, Salah
    [J]. 2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [5] Fast classification of handwritten on-line Arabic characters
    Kour, George
    Saabne, Raid
    [J]. 2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2014, : 312 - 318
  • [6] SVM Model Selection Using PSO for Learning Handwritten Arabic Characters
    El Mamoun, Mamouni
    Mahmoud, Zennaki
    Kaddour, Sadouni
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (03): : 995 - 1008
  • [7] Recognizing arabic handwritten characters using deep learning and genetic algorithms
    Balaha, Hossam Magdy
    Ali, Hesham Arafat
    Youssef, Esraa Khaled
    Elsayed, Asmaa Elsayed
    Samak, Reem Adel
    Abdelhaleem, Mohammed Samy
    Tolba, Mohammed Mosa
    Shehata, Mahmoud Ragab
    Mahmoud, Mahmoud Refa'at
    Abdelhameed, Mariam Mahmoud
    Mohammed, Mostafa Mahmoud
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 32473 - 32509
  • [8] Recognizing arabic handwritten characters using deep learning and genetic algorithms
    Hossam Magdy Balaha
    Hesham Arafat Ali
    Esraa Khaled Youssef
    Asmaa Elsayed Elsayed
    Reem Adel Samak
    Mohammed Samy Abdelhaleem
    Mohammed Mosa Tolba
    Mahmoud Ragab Shehata
    Mahmoud Refa’at Mahmoud
    Mariam Mahmoud Abdelhameed
    Mostafa Mahmoud Mohammed
    [J]. Multimedia Tools and Applications, 2021, 80 : 32473 - 32509
  • [9] An incremental learning vector quantization algorithm for pattern classification
    Ye Xu
    Furao Shen
    Jinxi Zhao
    [J]. Neural Computing and Applications, 2012, 21 : 1205 - 1215
  • [10] An incremental learning vector quantization algorithm for pattern classification
    Xu, Ye
    Shen, Furao
    Zhao, Jinxi
    [J]. NEURAL COMPUTING & APPLICATIONS, 2012, 21 (06): : 1205 - 1215