Completable nilpotent Lie superalgebras

被引:0
|
作者
Wu, Mingzhong [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math & LPMC, Tianjin 300071, Peoples R China
[2] China West Normal Univ, Dept Math, Nanchong 637002, Peoples R China
关键词
Filiform Lie superalgebra; Heisenberg superalgebra; completable nilpotent Lie superalgebra; maximal torus; complete Lie superalgebra; INFINITESIMAL DEFORMATIONS; ALGEBRAS; CLASSIFICATION;
D O I
10.1007/s11464-014-0362-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a class of filiform Lie superalgebras L-n,L-m. From these Lie superalgebras, all the other filiform Lie superalgebras can be obtained by deformations. We have decompositions of Der((0) over bar)(L-n,L-m) and Der((1) over bar)(L-n,L-m). By computing a maximal torus on each L-n,L-m, we show that L-n,L-m are completable nilpotent Lie superalgebras. We also view L-n,L-m as Lie algebras, prove that L-n,L-m are of maximal rank, and show that L-n,L-m are completable nilpotent Lie algebras. As an application of the results, we show a Heisenberg superalgebra is a completable nilpotent Lie superalgebra.
引用
收藏
页码:697 / 713
页数:17
相关论文
共 50 条
  • [1] Completable nilpotent Lie superalgebras
    Mingzhong Wu
    Frontiers of Mathematics in China, 2015, 10 : 697 - 713
  • [2] Completable nilpotent Lie algebra
    Ren, B.
    Chinese Science Bulletin, 42 (21):
  • [3] Completable nilpotent Lie algebra
    REN BinSichuan Teachers College
    ChineseScienceBulletin, 1997, (21) : 1847 - 1847
  • [4] Completable nilpotent Lie algebra
    Ren, B
    CHINESE SCIENCE BULLETIN, 1997, 42 (21): : 1847 - 1847
  • [5] Simple completable contractions of nilpotent Lie algebras
    Campoamor-Stursberg R.
    Journal of Mathematical Sciences, 2005, 128 (4) : 3114 - 3120
  • [6] Multipliers of nilpotent Lie superalgebras
    Nayak, Saudamini
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (02) : 689 - 705
  • [7] Mathematica and nilpotent Lie superalgebras
    Camacho, LM
    Gómez, JR
    Navarro, RM
    Rodríguez, I
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2001, : 91 - 105
  • [8] Some deformations of nilpotent Lie superalgebras
    Bordemann, M.
    Gomez, J. R.
    Khakimdjanov, Yu.
    Navarro, R. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (05) : 1391 - 1403
  • [9] THE NILPOTENT CONE FOR CLASSICAL LIE SUPERALGEBRAS
    Jenkins, L. Andrew
    Nakano, Daniel K.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (12) : 5065 - 5080
  • [10] Identities for Lie superalgebras with a nilpotent commutator subalgebra
    Zaitsev, M. V.
    Mishchenko, S. P.
    ALGEBRA AND LOGIC, 2008, 47 (05) : 348 - 364