An Examination on Autoencoder Designs for Anomaly Detection in Video Surveillance

被引:9
|
作者
Cruz-Esquivel, Ernesto [1 ]
Guzman-Zavaleta, Zobeida J. [1 ]
机构
[1] Univ Americas Puebla, Dept Comp Elect & Mechatron, Cholula 72810, Mexico
关键词
Anomaly detection; spatiotemporal features; video surveillance; LSTM;
D O I
10.1109/ACCESS.2022.3142247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods for video surveillance find anomalies effectively enough; however, it comes at a high computational cost and specific hardware resources demanding. In counterpart, other video analysis tasks such as video action recognition now employ techniques that reduce the need for higher computational cost. Some of those techniques can be helpful for video anomaly detection. Therefore, this paper explores the effectiveness of the potential concepts of distillation and joint spatiotemporal training, adapted to two novel convolutional autoencoder architectures for anomaly detection in video surveillance. Our experimental results show the feasibility of reducing the computational resources requirements with smaller architectures (only 6K trainable parameters), competing and outperforming current methods in challenging benchmarks.
引用
收藏
页码:6208 / 6217
页数:10
相关论文
共 50 条
  • [1] Deep stacked denoising autoencoder for unsupervised anomaly detection in video surveillance
    Roka, Sanjay
    Diwakar, Manoj
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (03)
  • [2] Memory Clustering Autoencoder Method for Human Action Anomaly Detection on Surveillance Camera Video
    Yan, Mingchao
    Xiong, Yonghua
    She, Jinhua
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (18) : 20715 - 20728
  • [3] Anomaly detection in surveillance videos using deep autoencoder
    Mishra S.
    Jabin S.
    [J]. International Journal of Information Technology, 2024, 16 (2) : 1111 - 1122
  • [4] Anomaly detection for video surveillance applications
    Au, Carmen E.
    Skaff, Sandra
    Clark, James J.
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGS, 2006, : 888 - +
  • [5] Anomaly Detection and Modeling of Surveillance Video
    Yang, Fan
    Xiao, Bin
    Yu, Zhiwen
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (12): : 2708 - 2723
  • [6] Residual spatiotemporal autoencoder for unsupervised video anomaly detection
    Deepak, K.
    Chandrakala, S.
    Mohan, C. Krishna
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (01) : 215 - 222
  • [7] Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder
    Wang, Bokun
    Yang, Caiqian
    [J]. SENSORS, 2022, 22 (12)
  • [8] Spatio-Temporal AutoEncoder for Video Anomaly Detection
    Zhao, Yiru
    Deng, Bing
    Shen, Chen
    Liu, Yao
    Lu, Hongtao
    Hua, Xian-Sheng
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1933 - 1941
  • [9] Residual spatiotemporal autoencoder for unsupervised video anomaly detection
    K. Deepak
    S. Chandrakala
    C. Krishna Mohan
    [J]. Signal, Image and Video Processing, 2021, 15 : 215 - 222
  • [10] AnomalyNet: An Anomaly Detection Network for Video Surveillance
    Zhou, Joey Tianyi
    Du, Jiawei
    Zhu, Hongyuan
    Peng, Xi
    Liu, Yong
    Goh, Rick Siow Mong
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (10) : 2537 - 2550