Reconstitution of a eukaryotic replisome reveals the mechanism of asymmetric distribution of DNA polymerases

被引:6
|
作者
Yurieva, Olga
O'Donnell, Mike [1 ,2 ]
机构
[1] Rockefeller Univ, Howard Hughes Med Inst, 1230 York Ave, New York, NY 10021 USA
[2] Rockefeller Univ, DNA Replicat Lab, 1230 York Ave, New York, NY 10021 USA
基金
美国国家卫生研究院;
关键词
CMG; DNA helicase; DNA polymerase; primase; replisome; DROSOPHILA-MELANOGASTER EMBRYOS; REPLICATION IN-VITRO; SACCHAROMYCES-CEREVISIAE; HELICASE ACTIVITY; MCM2-7; HELICASE; LAGGING STRANDS; III HOLOENZYME; CMG HELICASE; DELTA; EPSILON;
D O I
10.1080/19491034.2016.1205774
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Eukaryotes require 3 DNA polymerases for normal replisome operations, DNA polymerases (Pol) alpha, delta and epsilon. Recent biochemical and structural studies support the asymmetric use of these polymerases on the leading and lagging strands. Pol epsilon interacts with the 11-subunit CMG helicase, forming a 15-protein leading strand complex that acts processively in leading strand synthesis in vitro, but Pol epsilon is inactive on the lagging strand. The opposite results are observed for Pol delta with CMG. Pol delta is highly active on the lagging strand in vitro, but has only feeble activity with CMG on the leading strand. Pol a also functions with CMG to prime both strands, and is even capable of extending both strands with CMG present. However, extensive DNA synthesis by Pol a is sharply curtailed by the presence of either Pol epsilon or Pol delta, which limits the role of the low fidelity Pol a to the initial priming of synthesis.
引用
收藏
页码:360 / 368
页数:9
相关论文
共 50 条
  • [1] Processive Activity of Replicative DNA Polymerases in the Replisome of Live Eukaryotic Cells
    Kapadia, Nitin
    El-Hajj, Ziad W.
    Zheng, Huan
    Beattie, Thomas R.
    Yu, Angela
    Reyes-Lamothe, Rodrigo
    MOLECULAR CELL, 2020, 80 (01) : 114 - +
  • [2] Reconstitution of translesion synthesis reveals a mechanism of eukaryotic DNA replication restart
    Guilliam, Thomas A.
    Yeeles, Joseph T. P.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2020, 27 (05) : 450 - +
  • [3] Reconstitution of translesion synthesis reveals a mechanism of eukaryotic DNA replication restart
    Thomas A. Guilliam
    Joseph T. P. Yeeles
    Nature Structural & Molecular Biology, 2020, 27 : 450 - 460
  • [4] New Insights into the Mechanism of DNA Duplication by the Eukaryotic Replisome
    Pellegrini, Luca
    Costa, Alessandro
    TRENDS IN BIOCHEMICAL SCIENCES, 2016, 41 (10) : 859 - 871
  • [5] Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation
    Georgescu, Roxana E.
    Schauer, Grant D.
    Yao, Nina Y.
    Langston, Lance D.
    Yurieva, Olga
    Zhang, Dan
    Finkelstein, Jeff
    O'Donnell, Mike E.
    ELIFE, 2015, 4
  • [6] Eukaryotic DNA polymerases
    Mikhailov, VS
    MOLECULAR BIOLOGY, 1999, 33 (04) : 498 - 510
  • [7] Eukaryotic DNA polymerases
    Jain, Rinku
    Aggarwal, Aneel K.
    Rechkoblit, Olga
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2018, 53 : 77 - 87
  • [8] Eukaryotic DNA polymerases
    Hübscher, U
    Maga, G
    Spadari, S
    ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 : 133 - 163
  • [9] Independent and Stochastic Action of DNA Polymerases in the Replisome
    Graham, James E.
    Marians, Kenneth J.
    Kowalczykowski, Stephen C.
    CELL, 2017, 169 (07) : 1201 - +
  • [10] EUKARYOTIC DNA-POLYMERASES
    WANG, TSF
    ANNUAL REVIEW OF BIOCHEMISTRY, 1991, 60 : 513 - 552