Nanostructured cathode materials for rechargeable lithium batteries

被引:95
|
作者
Myung, Seung-Taek [1 ]
Amine, Khalil [2 ]
Sun, Yang-Kook [3 ]
机构
[1] Sejong Univ, Dept Nano Engn, Seoul 143747, South Korea
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[3] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
Nanosize; Nanoscale; Nanostructure; Cathode; Lithium; Batteries; POSITIVE-ELECTRODE MATERIALS; SPINEL LIMN2O4 NANOWIRES; NICKEL-MANGANESE-OXIDES; ELECTROCHEMICAL PROPERTIES; HIGH-PERFORMANCE; ION BATTERY; HIGH-POWER; HYDROTHERMAL SYNTHESIS; COMPOSITE ELECTRODES; CYCLING PERFORMANCE;
D O I
10.1016/j.jpowsour.2015.02.119
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:219 / 236
页数:18
相关论文
共 50 条
  • [1] Nanostructured cathode materials for alkaline and lithium rechargeable batteries
    Reisner, DE
    Strutt, PR
    Xiao, TD
    Salkind, AJ
    THIRTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, 1998, : 369 - 372
  • [2] Cathode materials for rechargeable lithium batteries
    Pervov, VS
    Kedrinskii, IA
    Makhonina, EV
    INORGANIC MATERIALS, 1997, 33 (09) : 869 - 877
  • [3] Advances in the Cathode Materials for Lithium Rechargeable Batteries
    Lee, Wontae
    Muhammad, Shoaib
    Sergey, Chernov
    Lee, Hayeon
    Yoon, Jaesang
    Kang, Yong-Mook
    Yoon, Won-Sub
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (07) : 2578 - 2605
  • [4] Future cathode materials for lithium rechargeable batteries
    Ritchie, AG
    Giwa, CO
    Lee, JC
    Bowles, P
    Gilmour, A
    Allan, J
    Rice, DA
    Brady, F
    Tsang, SCE
    JOURNAL OF POWER SOURCES, 1999, 80 (1-2) : 98 - 102
  • [5] Nanostructured cathode materials for rechargeable lithium batteries ( vol 283, pg 219, 2015)
    Myung, Seung-Taek
    Amine, Khalil
    Sun, Yang-Kook
    JOURNAL OF POWER SOURCES, 2015, 293 : 734 - 734
  • [6] A Novel Sulphur Cathode Materials for Rechargeable Lithium Batteries
    Jin, Bo
    Park, Kyung-Hee
    Gu, Hal-Bon
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2007, 8 (04) : 157 - 160
  • [7] Hybrid Organosulfur Cathode Materials for Rechargeable Lithium Batteries
    Zhang, Xiuqing
    Guo, Wei
    Fu, Yongzhu
    ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (03): : 316 - 328
  • [8] Phenyl Selenosulfides as Cathode Materials for Rechargeable Lithium Batteries
    Cui, Yi
    Ackerson, Joseph D.
    Ma, Ying
    Bhargav, Amruth
    Karty, Jonathan A.
    Guo, Wei
    Zhu, Likun
    Fu, Yongzhu
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (31)
  • [9] Phenyl Tellurosulfides as Cathode Materials for Rechargeable Lithium Batteries
    Chen, Qianhan
    Fu, Yongzhu
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (37) : 48803 - 48809
  • [10] Sulfur composite cathode materials for rechargeable lithium batteries
    Wang, JL
    Yang, J
    Wan, CR
    Du, K
    Xie, JY
    Xu, NX
    ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (06) : 487 - 492