A Proposal of Condition Monitoring with Missing Data and Small-Magnitude Faults in Industrial Plants

被引:0
|
作者
Bernal-de-Lazaro, Jose M. [1 ]
Cruz Corona, Carlos [2 ]
Rocha, Marcelo Lisboa [3 ]
Neto, Antonio J. Silva [4 ]
Llanes-Santiago, Orestes [1 ]
机构
[1] Univ Tecnol La Habana Jose Antonio Echeverria, Havana, Cuba
[2] Univ Granada, Granada, Spain
[3] Univ Fed Tocantins, Palmas, TO, Brazil
[4] Univ Estado Rio de Janeiro, Nova Friburgo, RJ, Brazil
关键词
Incipient faults; Missing data; EWMA-ED; KPCA; INCOMPLETE OBSERVATIONS; DIAGNOSIS; IMPUTATION;
D O I
10.1007/978-3-030-89691-1_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The patterns of incipient and small-magnitude faults are easily masked by the effect of interferences, missing data, and noisy measurements which are common in the industrial environments. Therefore, a smart data analysis of these patterns is needed for effectively minimizing the false and missing alarm rates resulting from noise, uncertainty, and unknown disturbances with the goal to achieve high detection performances, even in presence of missing data in the observations. This paper provides a novel methodology for the on-line imputation of missing data by using three techniques: Fuzzy C-means (FCM), Singular Value Decomposition (SVD), and Partial Least Squares regression (PLSr). Afterward, a data preprocessing stage using the KPCA and Exponentially Weighted Moving Average (EWMA-ED) is developed. The effectiveness of the proposal to obtain satisfactory results in the detection of small-magnitude faults was validated by using the Tennessee Eastman (TE) process benchmark.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 50 条
  • [1] Enhanced dynamic approach to improve the detection of small-magnitude faults
    Bernal-de-Lazaro, J. M.
    Llanes-Santiago, O.
    Prieto-Moreno, A.
    Knupp, D. C.
    Silva-Neto, A. J.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2016, 146 : 166 - 179
  • [2] Data-driven fault detection methods for detecting small-magnitude faults in anaerobic digestion process
    Kazemi, Pezhman
    Giralt, Jaume
    Bengoa, Christophe
    Steyer, Jean-Philippe
    [J]. WATER SCIENCE AND TECHNOLOGY, 2020, 81 (08) : 1740 - 1748
  • [3] On the Testing of Ground-Motion Prediction Equations against Small-Magnitude Data
    Beauval, Celine
    Tasan, Hilal
    Laurendeau, Aurore
    Delavaud, Elise
    Cotton, Fabrice
    Gueguen, Philippe
    Kuehn, Nicolas
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2012, 102 (05) : 1994 - 2007
  • [4] A Proposal of Robust Condition Monitoring Scheme for Industrial Systems
    Rodriguez-Ramos, Adrian
    Javier Ortiz, Francisco
    Llanes-Santiago, Orestes
    [J]. COMPUTACION Y SISTEMAS, 2023, 27 (01): : 223 - 235
  • [5] New data about small-magnitude earthquakes of the ultraslow-spreading Gakkel Ridge, Arctic Ocean
    Morozov, Alexey N.
    Vaganova, Natalya V.
    Ivanova, Ekaterina V.
    Konechnaya, Yana V.
    Fedorenko, Irina V.
    Mikhaylova, Yana A.
    [J]. JOURNAL OF GEODYNAMICS, 2016, 93 : 31 - 41
  • [6] Toward the Imputation and Prediction of Condition Monitoring Data with Missing Values
    Zhang, Di
    Li, Canbing
    Zhu, Jizhong
    [J]. 2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 996 - 1002
  • [7] Techniques for handling missing data: Applications to online condition monitoring
    Nelwamondo, Fulufhelo Vincent
    Marwala, Tshilidzi
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (06): : 1507 - 1526
  • [8] Structured Data Ontology for AI in Industrial Asset Condition Monitoring
    Hendriks, Jacob
    Azarm, Mana
    Dumond, Patrick
    [J]. JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2024, 13 (02)
  • [9] A Review on Data-Driven Condition Monitoring of Industrial Equipment
    Qi, Ruosen
    Zhang, Jie
    Spencer, Katy
    [J]. ALGORITHMS, 2023, 16 (01)
  • [10] Missing Data Imputation Using SVD-KDR Algorithm in Industrial Monitoring Data
    Chen S.
    Zhao M.
    Guo D.
    Lin J.
    [J]. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (02): : 30 - 38