Conservation laws of the generalized short pulse equation

被引:10
|
作者
Zhang Zhi-Yong [1 ]
Chen Yu-Fu [2 ]
机构
[1] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear self-adjointness with differential substitution; adjoint symmetry; conservation law; NOETHER-TYPE SYMMETRIES; PARTIAL LAGRANGIANS;
D O I
10.1088/1674-1056/24/2/020201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the generalized short pulse equation is nonlinearly self-adjoint with differential substitution. Moreover, any adjoint symmetry is a differential substitution of nonlinear self-adjointness, and vice versa. Consequently, the general conservation law formula is constructed and new conservation laws for some special cases are found.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Conservation laws of the generalized short pulse equation
    张智勇
    陈玉福
    Chinese Physics B, 2015, (02) : 16 - 19
  • [2] Symmetry reductions and conservation laws of the short pulse equation
    Fakhar, K.
    Wang, Gangwei
    Kara, A. H.
    OPTIK, 2016, 127 (21): : 10201 - 10207
  • [3] Conservation laws of the complex short pulse equation and coupled complex short pulse equations
    Zhang, Lihua
    Shen, Bo
    Han, Shuxin
    Wang, Gangwei
    Wang, Lingshu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (07)
  • [4] On Conservation Laws for a Generalized Boussinesq Equation
    Anco, S.
    Rosa, M.
    Gandarias, M. L.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [5] Conservation laws and symmetries of a generalized Kawahara equation
    Luz Gandarias, Maria
    Rosa, Maria
    Recio, Elena
    Anco, Stephen
    APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 1836
  • [6] Conservation laws of femtosecond pulse propagation described by generalized nonlinear Schrodinger equation with cubic nonlinearity
    Trofimov, Vyacheslav A.
    Stepanenko, Svetlana
    Razgulin, Alexander
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 182 : 366 - 396
  • [7] Generalized compacton equation, conservation laws and exact solutions
    Iqbal, A.
    Naeem, I.
    CHAOS SOLITONS & FRACTALS, 2022, 154
  • [8] Symmetries and conservation laws of the Yao–Zeng two-component short-pulse equation
    Ben Gao
    Yao Zhang
    Boundary Value Problems, 2019
  • [9] Conservation laws for a generalized seventh order KdV equation
    Bruzon, M. S.
    Marquez, A. P.
    Garrido, T. M.
    Recio, E.
    de la Rosa, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 354 : 682 - 688
  • [10] Conservation laws of the generalized nonlocal nonlinear Schrodinger equation
    Ouyang Shi-Gen
    Guo Qi
    Wu Li-Jun
    Lan Sheng
    CHINESE PHYSICS, 2007, 16 (08): : 2331 - 2337