Quality factor tuning of micromechanical resonators via electrical dissipation

被引:17
|
作者
Bousse, Nicholas E. [1 ]
Miller, James M. L.
Kwon, Hyun-Keun
Vukasin, Gabrielle D.
Kenny, Thomas W.
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
NANOMECHANICAL RESONATORS; MECHANICAL RESONANCE; OSCILLATOR; CHARGE;
D O I
10.1063/1.5125286
中图分类号
O59 [应用物理学];
学科分类号
摘要
Sensitive capacitive transduction of micromechanical resonators can contribute significant electrical dissipation, which degrades the quality factor of the eigenmodes. We theoretically and experimentally demonstrate a scheme for isolating the electrical damping of a mechanical resonator due to Ohmic dissipation in the readout amplifier. The quality factor suppression arising from the amplifier is strongly dependent on the amplifier feedback resistance and parasitic capacitance. By studying the thermomechanical displacement noise spectrum of a doubly clamped micromechanical beam, we confirm that electrical dissipation tunes the actual, not effective, quality factor. Electrical dissipation is an important consideration in the design of sensitive capacitive displacement transducers, which are a key component in resonant sensors and oscillators.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Effective quality factor tuning mechanisms in micromechanical resonators
    Miller, James M. Lehto
    Ansari, Azadeh
    Heinz, David B.
    Chen, Yunhan
    Flader, Ian B.
    Shin, Dongsuk D.
    Villanueva, L. Guillermo
    Kenny, Thomas W.
    APPLIED PHYSICS REVIEWS, 2018, 5 (04):
  • [2] Energy Dissipation in Micromechanical Resonators
    Ayazi, Farrokh
    Sorenson, Logan
    Tabrizian, Roozbeh
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS III, 2011, 8031
  • [3] INFLUENCE OF CLAMPING LOSS AND ELECTRICAL DAMPING ON NONLINEAR DISSIPATION IN MICROMECHANICAL RESONATORS
    Miller, James M. L.
    Alter, Anne L.
    Bousse, Nicholas E.
    Chen, Yunhan
    Flader, Ian B.
    Shin, Dongsuk D.
    Kenny, Thomas W.
    Shaw, Steven W.
    2022 IEEE 35TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS CONFERENCE (MEMS), 2022, : 507 - 510
  • [4] Engineering the Dissipation of Crystalline Micromechanical Resonators
    Romero, Erick
    Valenzuela, Victor M.
    Kermany, Atieh R.
    Sementilli, Leo
    Iacopi, Francesca
    Bowen, Warwick P.
    PHYSICAL REVIEW APPLIED, 2020, 13 (04)
  • [5] Thermoelastic dissipation of hollow micromechanical resonators
    Tunvir, K.
    Ru, C. Q.
    Mioduchowski, A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (09): : 2341 - 2352
  • [6] Controlling Quality Factor in Micromechanical Resonators by Carrier Excitation
    Okamoto, Hajime
    Ito, Daisuke
    Onomitsu, Koji
    Sogawa, Tetsuomi
    Yamaguchi, Hiroshi
    APPLIED PHYSICS EXPRESS, 2009, 2 (03)
  • [7] Controlling quality factor in micromechanical resonators by carrier excitation
    Okamoto, Hajime
    Ito, Daisuke
    Onomitsu, Koji
    Sogawa, Tetsuomi
    Yamaguchi, Hiroshi
    Applied Physics Express, 2009, 2 (03):
  • [8] Quality Factor in Polycrystalline Diamond Micromechanical Flexural Resonators
    Najar, Hadi
    Yang, Chen
    Heidari, Amir
    Lin, Liwei
    Horsley, David A.
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2015, 24 (06) : 2152 - 2160
  • [9] Quality factor of thermally excited micromechanical cantilever resonators
    Han, Jianqiang
    Zhu, Changchun
    Liu, Junhua
    Zhang, Kun
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2002, 36 (04): : 377 - 380
  • [10] Optical Tuning of Coupled Micromechanical Resonators
    Okamoto, Hajime
    Kamada, Takehito
    Onomitsu, Koji
    Mahboob, Imran
    Yamaguchi, Hiroshi
    APPLIED PHYSICS EXPRESS, 2009, 2 (06)