EXPONENTIALS OF NON-SINGULAR SIMPLICIAL SETS

被引:0
|
作者
Fjellbo, Vegard [1 ]
Rognes, John [1 ]
机构
[1] Univ Oslo, Dept Math, POB 1053, NO-0316 Oslo, Norway
关键词
non-singular simplicial set; exponential ideal; cartesian closed category;
D O I
10.4310/HHA.2022.v24.n2.a15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simplicial set is non-singular if the representing map of each non-degenerate simplex is degreewise injective. The simplicial mapping set X-K has n-simplices given by the simplicial maps Delta[n] x K -> X. We prove that X-K is non-singular whenever X is non-singular. It follows that non-singular simplicial sets form a cartesian closed category with all limits and colimits, but it is not a topos.
引用
收藏
页码:307 / 314
页数:8
相关论文
共 50 条
  • [1] ON MINIMAL SETS OF NON-SINGULAR VECTOR FIELDS
    WILSON, FW
    [J]. ANNALS OF MATHEMATICS, 1966, 84 (03) : 529 - &
  • [2] Sets of coincidence points on the non-singular cubics of a syzygetic sheaf
    Porter, M. B.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1901, 2 (1-4) : 37 - 42
  • [3] Non-Singular graphs with a Singular Deck
    Farrugia, Alexander
    Gauci, John Baptist
    Sciriha, Irene
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 202 : 50 - 57
  • [4] A note on singular and non-singular black holes
    Chinaglia, Stefano
    Zerbini, Sergio
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (06)
  • [5] CATEGORY OF NON-SINGULAR MODULES
    LECLERC, C
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (06): : 308 - &
  • [6] A NON-SINGULAR ELECTROMAGNETIC FIELD
    MISRA, M
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (OCT): : 711 - &
  • [7] NON-SINGULAR QUANTUM UNIVERSE
    DEMARET, J
    [J]. NATURE, 1979, 277 (5693) : 199 - 201
  • [8] Non-singular dislocation fields
    Aifantis, Elias C.
    [J]. DISLOCATIONS 2008, 2009, 3
  • [9] On non-singular multilinear maps
    Sun, Xiaosong
    Du, Xiankun
    Liu, Dayan
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (03): : 297 - 303
  • [10] A note on singular and non-singular black holes
    Stefano Chinaglia
    Sergio Zerbini
    [J]. General Relativity and Gravitation, 2017, 49