Interaction of modulated pulses in scalar multidimensional nonlinear lattices

被引:3
|
作者
Giannoulis, Johannes [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85748 Munich, Germany
关键词
nonlinear discrete lattices; interaction of modulated pulses; multiscale ansatz; derivation and justification of macroscopic dynamics; SCHRODINGER-EQUATION; 3-WAVE INTERACTION; EVOLUTION; VALIDITY;
D O I
10.1080/00036811003649124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the macroscopic dynamics of sets of an arbitrary finite number of weakly amplitude-modulated pulses in a multidimensional lattice of particles. The latter are assumed to exhibit scalar displacement under pairwise nonlinear interaction potentials of arbitrary range and are embedded in a nonlinear background field. By an appropriate multiscale ansatz, we derive formally the explicit evolution equations for the macroscopic amplitudes up to an arbitrarily high-order of the scaling parameter, thereby deducing the resonance and nonresonance conditions on the fixed wave vectors and frequencies of the pulses, which are required for that. The derived equations are justified rigorously in time intervals of macroscopic length. Finally, for sets of up to three pulses we present a complete list of all possible interactions and discuss their ramifications for the corresponding, explicitly given macroscopic systems.
引用
收藏
页码:1413 / 1445
页数:33
相关论文
共 50 条
  • [1] Interaction of modulated pulses in nonlinear oscillator chains
    Schneider, Guido
    Uecker, Hannes
    Wand, Michael
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (03) : 279 - 298
  • [2] Interaction of modulated pulses in the nonlinear Schrodinger equation with periodic potential
    Giannoulis, Johannes
    Mielke, Alexander
    Sparber, Christof
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (04) : 939 - 963
  • [3] Nonlinear photonics in multidimensional and complex photonic lattices
    Denz, C.
    Terhalle, B.
    Goeries, D.
    Rose, P.
    Xavier, J.
    Richter, T.
    Desyatnikov, A. S.
    Imbrock, J.
    Alexander, T. J.
    Neshev, D. N.
    Joseph, J.
    Kaiser, F.
    Krolikowski, W.
    Kivshar, Y. S.
    NONLINEAR OPTICS AND APPLICATIONS III, 2009, 7354
  • [4] Extended nonlinear waves in multidimensional dynamical lattices
    Hoq, Q. E.
    Gagnon, J.
    Kevrekidis, P. G.
    Malomed, B. A.
    Frantzeskakis, D. J.
    Carretero-Gonzalez, R.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (04) : 721 - 731
  • [5] THE NONLINEAR INTERACTION OF SCALAR FIELDS
    DRESDEN, M
    PHYSICAL REVIEW, 1952, 87 (01): : 224 - 224
  • [6] Multidimensional aspects of nonlinear electromagnetic solitary pulses
    Bonatto, A.
    Nunes, R. P.
    Bonatto, C.
    Pakter, R.
    Lopes, S. R.
    Rizzato, F. B.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 404 : 332 - 340
  • [7] Dynamics of time-modulated, nonlinear phononic lattices
    Kim, B. L.
    Chong, C.
    Hajarolasvadi, S.
    Wang, Y.
    Daraio, C.
    PHYSICAL REVIEW E, 2023, 107 (03)
  • [8] Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems
    Chen, Shihua
    Baronio, Fabio
    Soto-Crespo, Jose M.
    Grelu, Philippe
    Mihalache, Dumitru
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (46)
  • [9] Interaction of pulses in the nonlinear Schrodinger model
    Tsoy, EN
    Abdullaev, FK
    PHYSICAL REVIEW E, 2003, 67 (05): : 1 - 056610
  • [10] NONLINEAR INTERACTION WITH SUBNANOSECOND LASER PULSES
    DEMARIA, AJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1968, 58 (05) : 738 - &