On the convergence of the quadratic method

被引:2
|
作者
Boulton, Lyonell [1 ,2 ]
Hobiny, Aatef [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
基金
英国工程与自然科学研究理事会;
关键词
quadratic method; eigenvalue computation; projection methods; SPECTRAL POLLUTION; APPROXIMATION; EIGENVALUES;
D O I
10.1093/imanum/drv036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The convergence of the so-called quadratic method for computing eigenvalue enclosures of general self-adjoint operators is examined. Explicit asymptotic bounds for convergence to isolated eigenvalues are found. These bounds turn out to improve significantly upon those determined in previous investigations. The theory is illustrated by means of several numerical experiments performed on particularly simple benchmark models of one-dimensional Schrodinger operators.
引用
收藏
页码:1310 / 1333
页数:24
相关论文
共 50 条