Volume preserving mean curvature flow in the hyperbolic space

被引:47
|
作者
Cabezas-Rivas, Esther [1 ]
Miquel, Vicente [1 ]
机构
[1] Univ Valencia, Dept Geometria & Topol, E-46100 Valencia, Spain
关键词
volume preserving mean curvature flow; hyperbolic space; convex by horospheres;
D O I
10.1512/iumj.2007.56.3060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove: "If M is a compact hypersurface of the hyperbolic space, convex by horospheres and evolving by the volume preserving mean curvature flow, then it flows for all time, convexity by horospheres is preserved and the flow converges, exponentially, to a geodesic sphere". In addition, we show that the same conclusions about long time existence and convergence hold if M is not convex by horospheres but it is close enough to a geodesic sphere.
引用
收藏
页码:2061 / 2086
页数:26
相关论文
共 50 条
  • [1] Volume preserving non-homogeneous mean curvature flow in hyperbolic space
    Bertini, Maria Chiara
    Pipoli, Giuseppe
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 54 : 448 - 463
  • [2] Volume-preserving flow by powers of the m-th mean curvature in the hyperbolic space
    Guo, Shunzi
    Li, Guanghan
    Wu, Chuanxi
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2017, 25 (02) : 321 - 372
  • [3] THE VOLUME-PRESERVING MEAN CURVATURE FLOW IN EUCLIDEAN SPACE
    Li, Haozhao
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2009, 243 (02) : 331 - 355
  • [4] Volume preserving mean curvature flow of L2-almost umbilical hypersurfaces in hyperbolic space
    Li, Shiyang
    Xu, Hongwei
    Zhao, Entao
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (08)
  • [5] VOLUME PRESERVING GAUSS CURVATURE FLOW OF CONVEX HYPERSURFACES IN THE HYPERBOLIC SPACE
    Wei, Yong
    Yang, Bo
    Zhou, Tailong
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, : 2821 - 2854
  • [6] Volume-preserving mean curvature flow of hypersurfaces in space forms
    Xu, Hongwei
    Leng, Yan
    Zhao, Entao
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (03)
  • [7] Quermassintegral preserving curvature flow in Hyperbolic space
    Andrews, Ben
    Wei, Yong
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (05) : 1183 - 1208
  • [8] Quermassintegral preserving curvature flow in Hyperbolic space
    Ben Andrews
    Yong Wei
    [J]. Geometric and Functional Analysis, 2018, 28 : 1183 - 1208
  • [9] THE VOLUME PRESERVING MEAN-CURVATURE FLOW
    HUISKEN, G
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1987, 382 : 35 - 48
  • [10] The mixed volume preserving mean curvature flow
    James A. McCoy
    [J]. Mathematische Zeitschrift, 2004, 246 : 155 - 166