Lithium Fluoride in Electrolyte for Stable and Safe Lithium-Metal Batteries

被引:162
|
作者
Tan, Yi-Hong [1 ,2 ]
Lu, Gong-Xun [3 ]
Zheng, Jian-Hui [3 ]
Zhou, Fei [1 ,2 ,4 ]
Chen, Mei [3 ]
Ma, Tao [1 ,2 ]
Lu, Lei-Lei [1 ,2 ]
Song, Yong-Hui [1 ,2 ]
Guan, Yong [5 ]
Wang, Junxiong [6 ]
Liang, Zheng [6 ]
Xu, Wen-Shan [4 ]
Zhang, Yuegang [7 ]
Tao, Xinyong [3 ]
Yao, Hong-Bin [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Appl Chem, Hefei 230026, Peoples R China
[3] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
[4] Monta Vista Energy Technol Corp, Hefei 230601, Peoples R China
[5] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China
[6] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Frontiers Sci Ctr Transformat Mol, Shanghai 200240, Peoples R China
[7] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
electrolyte engineering; fluorinated solid electrolyte interphase; high current density; high energy density; porous LiF nanoboxes; HIGH-ENERGY; CYCLIC CARBONATE; POUCH CELLS; ANODE; DEPOSITION; LAYER; CHALLENGES; LIQUID;
D O I
10.1002/adma.202102134
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high-energy Li-metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li-metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X-ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high-fluorine-content (>30%) solid electrolyte interphase layer, which enables very stable Li-metal anode cycling over one thousand cycles under high current density (4 mA cm(-2)). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8Co0.1Mn0.1O2 pouch cell is achieved with a specific energy of 380 Wh kg(-1) for stable cycling over 80 cycles, representing the excellent performance of the Li-metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li-metal batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Supramolecular Electrolyte for Lithium-Metal Batteries
    Xie, Jin
    Li, Bo-Quan
    Song, Yun-Wei
    Peng, Hong-Jie
    Zhang, Qiang
    [J]. BATTERIES & SUPERCAPS, 2020, 3 (01) : 47 - 51
  • [2] Highly safe and stable lithium-metal batteries based on a quasi-solid-state electrolyte
    Zhu, Xingyu
    Chang, Zhi
    Yang, Huijun
    He, Ping
    Zhou, Haoshen
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (02) : 651 - 663
  • [3] Uniform lithium electrodeposition for stable lithium-metal batteries
    He, Xin
    Yang, Yang
    Cristian, Marian Stan
    Wang, Jun
    Hou, Xu
    Yan, Bo
    Li, Jinke
    Zhang, Tong
    Paillard, Elie
    Swietoslawski, Michal
    Kostecki, Robert
    Winter, Martin
    Li, Jie
    [J]. NANO ENERGY, 2020, 67
  • [4] Thermoresponsive Electrolytes for Safe Lithium-Metal Batteries
    Jiang, Feng-Ni
    Cheng, Xin-Bing
    Yang, Shi-Jie
    Xie, Jin
    Yuan, Hong
    Liu, Lei
    Huang, Jia-Qi
    Zhang, Qiang
    [J]. ADVANCED MATERIALS, 2023, 35 (12)
  • [5] A multiple electrolyte concept for lithium-metal batteries
    Di Lecce, Daniele
    Sharova, Varvara
    Jeong, Sangsik
    Moretti, Arianna
    Passerini, Stefano
    [J]. SOLID STATE IONICS, 2018, 316 : 66 - 74
  • [6] Highly Reversible Lithium-Metal Anode and Lithium-Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte
    Chen, Jiahang
    Yang, Huijun
    Zhang, Xuan
    Lei, Jingyu
    Zhang, Huiming
    Yuan, Huanhuan
    Yang, Jun
    Nuli, Yanna
    Wang, Jiulin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (36) : 33419 - 33427
  • [7] Nonflammable quasi-solid-state electrolyte for stable lithium-metal batteries
    Sun, Qiushi
    Chen, Xiao
    Xie, Jian
    Xu, Xiongwen
    Tu, Jian
    Zhang, Peng
    Zhao, Xinbing
    [J]. RSC ADVANCES, 2019, 9 (72) : 42183 - 42193
  • [8] Electrolyte designs for safer lithium-ion and lithium-metal batteries
    Lim, J. J. Nicholas
    Lim, Gwendolyn J. H.
    Cai, Yi
    Chua, Rodney
    Guo, Yuqi
    Yan, Yao
    Srinivasan, Madhavi
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (42) : 22688 - 22717
  • [9] Lithium Redistribution in Lithium-Metal Batteries
    Ferrese, Anthony
    Albertus, Paul
    Christensen, Jake
    Newman, John
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (10) : A1615 - A1623
  • [10] Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
    Cheng, Xin-Bing
    Yan, Chong
    Chen, Xiang
    Guan, Chao
    Huang, Jia-Qi
    Peng, Hong-Jie
    Zhang, Rui
    Yang, Shu-Ting
    Zhang, Qiang
    [J]. CHEM, 2017, 2 (02): : 258 - 270