Crystal-growth kinetics of magnetite (Fe3O4) nanoparticles with Ostwald Ripening Model approach

被引:1
|
作者
Utami, S. P. [1 ]
Fadli, A. [1 ]
Sari, E. O. [1 ]
Addabsi, A. S. [1 ]
机构
[1] Riau Univ, Dept Chem Engn Fac, Biomat & Corros Lab, Tampan, Riau, Indonesia
关键词
GLYCOL PEG;
D O I
10.1088/1757-899X/345/1/012010
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Magnetite (Fe3O4) nanoparticles is a magnetic nanomaterial that have potential properties to be applied as drug delivery The purpose of this study was to determine the influence of time and temperature synthesis of magnetie characteristics and determine its crystal growth kinetics model with Ostwald ripening model approach. Magnetite nanoparticles synthesized from FeCl3, citrate, urea and polyethylene glycol with hydrothermal method at 180, 200 and 220 degrees C for 1,3,5,7,9 and 12 hours. Characterization by X-ray Diffraction (XRD) indicated that magnetite formed at temperatures of 200 and 220 degrees C. Magnetite crystallite diameter obtained was 10-29 nm. Characterization by Transmission Electron Mycroscope (TEM) shows that magnetite nanoparticles have uniform size and non-agglomerated. Core-shell shaped particles formed at 200 degrees C and 220 degrees C for 3 hours. Irregular shape obtained at 220 degrees C for 12 hour synthesis with particle diameter about 120 nm. Characterization using Vibrating Sample Magnetometer (VSM) shown that magnetite has super paramagnetism behaviour with the highest saturation magnetization (Ms) was 70.27 emu/g. magnetite crystal growth data at temperature of 220 degrees C can be fitted by Ostwald ripening growth model with growth controlled by the dissolution of surface reaction (n approximate to 4) with the percent error of 2.53%.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [1] THE ANISOTROPY OF THE CRYSTAL-GROWTH OF FE3O4 IN AN AQUEOUS-SOLUTION
    TAMAURA, Y
    ITOH, T
    MATSUDA, T
    ABE, M
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1990, 63 (05) : 1354 - 1359
  • [2] Magneto-acceleration of Ostwald ripening in hollow Fe3O4 nanospheres
    Ding, Wei
    Hu, Lin
    Sheng, Zhigao
    Dai, Jianming
    Zhu, Xuebin
    Tang, Xianwu
    Hui, Zhenzhen
    Sun, Yuping
    CRYSTENGCOMM, 2016, 18 (33): : 6134 - 6137
  • [3] MAGNETITE (FE3O4) NANOPARTICLES: ARE THEY REALLY SAFE?
    Ramirez, Lenin
    GRANJA-REVISTA DE CIENCIAS DE LA VIDA, 2015, 21 (01): : 76 - 82
  • [4] SKULL MELTER GROWTH OF MAGNETITE (FE3O4)
    HARRISON, HR
    ARAGON, R
    MATERIALS RESEARCH BULLETIN, 1978, 13 (11) : 1097 - 1104
  • [5] Investigation of magnetite Fe3O4 nanoparticles for magnetic hyperthermia
    Surowiec, Zbigniew
    Miaskowski, Arkadiusz
    Budzynski, Mieczyslaw
    NUKLEONIKA, 2017, 62 (02) : 183 - 186
  • [6] Size Controllable Synthesis of Magnetite Fe3O4 Nanoparticles
    Wang, Hong
    Chen, Jian
    Yang, Ruisong
    MANUFACTURING PROCESSES AND SYSTEMS, PTS 1-2, 2011, 148-149 : 1379 - 1382
  • [7] Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal
    Iconaru, Simona Liliana
    Guegan, Regis
    Popa, Cristina Liana
    Motelica-Heino, Mikael
    Ciobanu, Carmen Steluta
    Predoi, Daniela
    APPLIED CLAY SCIENCE, 2016, 134 : 128 - 135
  • [8] Remediation of arsenic contaminated groundwater with magnetite (Fe3O4) and chitosan coated Fe3O4 nanoparticles
    Ahuja, S.
    Mahanta, C.
    Sathe, S.
    Menan, L. C.
    Vipasha, M.
    ENVIRONMENTAL ARSENIC IN A CHANGING WORLD (AS2018), 2018, : 453 - 454
  • [9] Surface crystal structure of magnetite Fe3O4(110)
    Hokkaido Univ, Sapporo, Japan
    Jpn J Appl Phys Part 1 Regul Pap Short Note Rev Pap, 8 (4518-4521):
  • [10] Surface crystal structure of magnetite Fe3O4(110)
    Oda, Y
    Mizuno, S
    Todo, S
    Torikai, E
    Hayakawa, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (08): : 4518 - 4521