Generative One-Shot Learning (GOL): A Semi-Parametric Approach to One-Shot Learning in Autonomous Vision

被引:0
|
作者
Grigorescu, Sorin M. [1 ,2 ]
机构
[1] Elektrobit Automot, Wolfsmantel 46, D-91058 Erlangen, Germany
[2] Transilvania Univ Brasov, Fac Elect Engn & Comp Sci, B Dul Eroilor 29, Brasov 500036, Romania
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Highly Autonomous Driving (HAD) systems rely on deep neural networks for the visual perception of the driving environment. Such networks are train on large manually annotated databases. In this work, a semi-parametric approach to one-shot learning is proposed, with the aim of bypassing the manual annotation step required for training perceptions systems used in autonomous driving. The proposed generative framework, coined Generative One-Shot Learning (GOL), takes as input single one-shot objects, or generic patterns, and a small set of so-called regularization samples used to drive the generative process. New synthetic data is generated as Pareto optimal solutions from one-shot objects using a set of generalization functions built into a generalization generator. GOL has been evaluated on environment perception challenges encountered in autonomous vision.
引用
收藏
页码:7127 / 7134
页数:8
相关论文
共 50 条
  • [1] One-shot learning for autonomous aerial manipulation
    Zito, Claudio
    Ferrante, Eliseo
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [2] One-Shot Imitation Learning
    Duan, Yan
    Andrychowicz, Marcin
    Stadie, Bradly
    Ho, Jonathan
    Schneider, Jonas
    Sutskeyer, Ilya
    Abbeel, Pieter
    Zaremba, Wojciech
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [3] One-Shot Face Recognition via Generative Learning
    Ding, Zhengming
    Guo, Yandong
    Zhang, Lei
    Fu, Yun
    PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018), 2018, : 1 - 7
  • [4] One-Shot Learning for Landmarks Detection
    Wang, Zihao
    Vandersteen, Clair
    Raffaelli, Charles
    Guevara, Nicolas
    Patou, Francois
    Delingette, Herve
    DEEP GENERATIVE MODELS, AND DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS, 2021, 13003 : 163 - 172
  • [5] Local Contrast Learning for One-Shot Learning
    Zhang, Yang
    Yuan, Xinghai
    Luo, Ling
    Yang, Yulu
    Zhang, Shihao
    Xu, Chuanyun
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [6] Demystification of Few-shot and One-shot Learning
    Tyukin, Ivan Y.
    Gorban, Alexander N.
    Alkhudaydi, Muhammad H.
    Zhou, Qinghua
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] One-Shot Learning on Attributed Sequences
    Zhuang, Zhongfang
    Kong, Xiangnan
    Rundensteiner, Elke
    Arora, Aditya
    Zouaoui, Jihane
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 921 - 930
  • [8] Domain Adaption in One-Shot Learning
    Dong, Nanqing
    Xing, Eric P.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 573 - 588
  • [9] The role of one-shot learning in # TheDress
    Daoudi, Leila Drissi
    Doerig, Adrien
    Parkosadze, Khatuna
    Kunchulia, Marina
    Herzog, Michael H.
    JOURNAL OF VISION, 2017, 17 (03):
  • [10] One-shot learning of object categories
    Li, FF
    Fergus, R
    Perona, P
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (04) : 594 - 611