Posterior concentration rates for empirical Bayes procedures with applications to Dirichlet process mixtures

被引:8
|
作者
Donnet, Sophie [1 ]
Rivoirard, Vincent [2 ]
Rousseau, Judith [2 ,3 ]
Scricciolo, Catia [4 ]
机构
[1] Univ Paris Saclay, UMR MIA Paris, AgroParisTech, INRA, F-75005 Paris, France
[2] Univ Paris 09, CEREMADE, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[3] CREST ENSAE, 3 Ave Pierre Larousse, F-92240 Malakoff, France
[4] Univ Verona, Dept Econ, Via Cantarane 24, I-37129 Verona, Italy
关键词
Aalen model; counting processes; Dirichlet process mixtures; empirical Bayes; posterior contraction rates; DENSITY-ESTIMATION; CONVERGENCE-RATES; DISTRIBUTIONS; DECONVOLUTION; CONSISTENCY; PRIORS;
D O I
10.3150/16-BEJ872
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide conditions on the statistical model and the prior probability law to derive contraction rates of posterior distributions corresponding to data-dependent priors in an empirical Bayes approach for selecting prior hyper-parameter values. We aim at giving conditions in the same spirit as those in the seminal article of Ghosal and van der Vaart [Ann. Statist. 35 (2007) 192-223]. We then apply the result to specific statistical settings: density estimation using Dirichlet process mixtures of Gaussian densities with base measure depending on data-driven chosen hyper-parameter values and intensity function estimation of counting processes obeying the Aalen model. In the former setting, we also derive recovery rates for the related inverse problem of density deconvolution. In the latter, a simulation study for inhomogeneous Poisson processes illustrates the results.
引用
收藏
页码:231 / 256
页数:26
相关论文
共 26 条