Random forest regression for online capacity estimation of lithium-ion batteries

被引:431
|
作者
Li, Yi [1 ]
Zou, Changfu [2 ]
Berecibar, Maitane [1 ]
Nanini-Maury, Elise [3 ]
Chan, Jonathan C. -W. [4 ]
van den Bossche, Peter [1 ]
Van Mierlo, Joeri [1 ]
Omar, Noshin [1 ]
机构
[1] Vrije Univ Brussel, Dept Mobil, Logist & Automot Technol Res Ctr, Pl Laan 2, B-1050 Brussels, Belgium
[2] Chalmers Univ Technol, Dept Elect Engn, S-41296 Gothenburg, Sweden
[3] ENGIE LAB Laborelec, Rodestr 125, B-1630 Linkebeek, Belgium
[4] Vrije Univ Brussel, Dept Elect & Informat, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Lithium-ion battery; On-line capacity estimation; State of health; Random forest regression; Incremental capacity analysis; OF-HEALTH ESTIMATION; CATHODE MATERIALS; STATE; MODEL; LIFE; MECHANISM; CELL;
D O I
10.1016/j.apenergy.2018.09.182
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Machine-learning based methods have been widely used for battery health state monitoring. However, the existing studies require sophisticated data processing for feature extraction, thereby complicating the implementation in battery management systems. This paper proposes a machine-learning technique, random forest regression, for battery capacity estimation. The proposed technique is able to learn the dependency of the battery capacity on the features that are extracted from the charging voltage and capacity measurements. The random forest regression is solely based on signals, such as the measured current, voltage and time, that are available onboard during typical battery operation. The collected raw data can be directly fed into the trained model without any pre-processing, leading to a low computational cost. The incremental capacity analysis is employed for the feature selection. The developed method is applied and validated on lithium nickel manganese cobalt oxide batteries with different ageing patterns. Experimental results show that the proposed technique is able to evaluate the health states of different batteries under varied cycling conditions with a root-mean-square error of less than 1.3% and a low computational requirement. Therefore, the proposed method is promising for online battery capacity estimation.
引用
收藏
页码:197 / 210
页数:14
相关论文
共 50 条
  • [1] Online Capacity Estimation of Lithium-ion Batteries by Partial Incremental Capacity Curve
    Wang, Yixiu
    Zhu, Jiangong
    Cao, Liang
    Gopaluni, Bhushan
    Cao, Yankai
    2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2022,
  • [2] Online capacity estimation for lithium-ion batteries through joint estimation method
    Yu, Quanqing
    Xiong, Rui
    Yang, Ruixin
    Pecht, Michael G.
    APPLIED ENERGY, 2019, 255
  • [3] A Regression-Based Technique for Capacity Estimation of Lithium-Ion Batteries
    Madani, Seyed Saeed
    Soghrati, Raziye
    Ziebert, Carlos
    BATTERIES-BASEL, 2022, 8 (04):
  • [4] Gaussian Process Regression for In Situ Capacity Estimation of Lithium-Ion Batteries
    Richardson, Robert R.
    Birkl, Christoph R.
    Osborne, Michael A.
    Howey, David A.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (01) : 127 - 138
  • [5] A deep learning method for online capacity estimation of lithium-ion batteries
    Shen, Sheng
    Sadoughi, Mohammadkazem
    Chen, Xiangyi
    Hong, Mingyi
    Hu, Chao
    JOURNAL OF ENERGY STORAGE, 2019, 25
  • [6] Online Lithium-ion Battery Capacity Estimation Based on Random Charging Data
    Gu P.
    Duan B.
    Kang Y.
    Zhang C.
    Du C.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (22): : 100 - 110
  • [7] Online State of Charge Estimation for Lithium-Ion Batteries Using Gaussian Process Regression
    Ozcan, Gozde
    Pajovic, Milutin
    Sahinoglu, Zafer
    Wang, Yebin
    Orlik, Philip V.
    Wada, Toshihiro
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 998 - 1003
  • [8] Real-Time State of Charge Estimation of Lithium-Ion Batteries Using Optimized Random Forest Regression Algorithm
    Hossain Lipu, M. S.
    Hannan, M. A.
    Hussain, Aini
    Ansari, Shaheer
    Rahman, S. A.
    Saad, Mohamad H. M.
    Muttaqi, K. M.
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 639 - 648
  • [9] Available Capacity Estimation of Lithium-ion Batteries Based on Optimized Gaussian Process Regression
    Shen J.-W.
    Ma W.-S.
    Xiao R.-X.
    Liu Y.-G.
    Chen Z.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2022, 35 (08): : 31 - 43
  • [10] The Lithium-ion Battery State-of-Charge Estimation using Random Forest Regression
    Li, Chuanjiang
    Chen, Zewang
    Cui, Jiang
    Wang, Youren
    Zou, Feng
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 336 - 339