Prediction of safety factors for slope stability: comparison of machine learning techniques

被引:41
|
作者
Mahmoodzadeh, Arsalan [1 ,2 ]
Mohammadi, Mokhtar [3 ]
Ali, Hunar Farid Hama [1 ]
Ibrahim, Hawkar Hashim [4 ]
Abdulhamid, Sazan Nariman [4 ]
Nejati, Hamid Reza [2 ]
机构
[1] Univ Halabja, Dept Civil Engn, Halabja, Kurdistan Regio, Iraq
[2] Tarbiat Modares Univ, Sch Engn, Rock Mech Div, Tehran, Iran
[3] Lebanese French Univ, Coll Engn & Comp Sci, Dept Informat Technol, Erbil, Kurdistan Regio, Iraq
[4] Salahaddin Univ Erbil, Coll Engn, Civil Engn Dept, Erbil 44002, Kurdistan Regio, Iraq
关键词
Slope stability; Factor of safety; Machine learning; PLAXIS; Feature selection; SUPPORT VECTOR MACHINE; NEURAL-NETWORKS; RELIABILITY; SIMULATION;
D O I
10.1007/s11069-021-05115-8
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Because of the disasters associated with slope failure, the analysis and forecasting of slope stability for geotechnical engineers are crucial. In this work, in order to forecast the factor of safety (FOS) of the slopes, six machine learning techniques of Gaussian process regression (GPR), support vector regression, decision trees, long-short term memory, deep neural networks, and K-nearest neighbors were performed. A total of 327 slope cases in Iran with various geometric and shear strength parameters analyzed by PLAXIS software to evaluate their FOS were employed in the models. The K-fold (K = 5) cross-validation (CV) method was applied to evaluate the performance of models' prediction. Finally, all the models produced acceptable results and almost close to each other. However, the GPR model with R-2 = 0.8139, RMSE = 0.160893, and MAPE = 7.209772% was the most accurate model to predict slope stability. Also, the backward selection method was applied to evaluate the contribution of each parameter in the prediction problem. The results showed that all the features considered in this study have significant contributions to slope stability. However, features phi (friction angle) and gamma (unit weight) were the most effective and least effective parameters on slope stability, respectively.
引用
收藏
页码:1771 / 1799
页数:29
相关论文
共 50 条
  • [1] Prediction of safety factors for slope stability: comparison of machine learning techniques
    Arsalan Mahmoodzadeh
    Mokhtar Mohammadi
    Hunar Farid Hama Ali
    Hawkar Hashim Ibrahim
    Sazan Nariman Abdulhamid
    Hamid Reza Nejati
    Natural Hazards, 2022, 111 : 1771 - 1799
  • [2] Rock Slope Stability Prediction: A Review of Machine Learning Techniques
    Arifuggaman Arif
    Chunlei Zhang
    Mahabub Hasan Sajib
    Md Nasir Uddin
    Md Habibullah
    Ruimin Feng
    Mingjie Feng
    Md Saifur Rahman
    Ye Zhang
    Geotechnical and Geological Engineering, 2025, 43 (3)
  • [3] Enhanced slope stability prediction using ensemble machine learning techniques
    Devendra Kumar Yadav
    Swarup Chattopadhyay
    Debi Prasad Tripathy
    Pragyan Mishra
    Pritiranjan Singh
    Scientific Reports, 15 (1)
  • [4] Comparison of machine learning algorithms for slope stability prediction using an automated machine learning approach
    Kurnaz, Talas Fikret
    Erden, Caner
    Dagdeviren, Ugur
    Demir, Alparslan Serhat
    Kokcam, Abdullah Hulusi
    NATURAL HAZARDS, 2024, 120 (08) : 6991 - 7014
  • [5] Application of Machine Learning Techniques for the Estimation of the Safety Factor in Slope Stability Analysis
    Nanehkaran, Yaser Ahangari
    Pusatli, Tolga
    Jin Chengyong
    Chen, Junde
    Cemiloglu, Ahmed
    Azarafza, Mohammad
    Derakhshani, Reza
    WATER, 2022, 14 (22)
  • [6] Prediction of slope stability based on five machine learning techniques approaches: a comparative study
    Soe Hlaing Tun
    Changnv Zeng
    Farhad Jamil
    Multiscale and Multidisciplinary Modeling, Experiments and Design, 2025, 8 (5)
  • [7] Evaluation and prediction of slope stability using machine learning approaches
    Lin, Shan
    Zheng, Hong
    Han, Chao
    Han, Bei
    Li, Wei
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2021, 15 (04) : 821 - 833
  • [8] An extreme learning machine approach for slope stability evaluation and prediction
    Zaobao Liu
    Jianfu Shao
    Weiya Xu
    Hongjie Chen
    Yu Zhang
    Natural Hazards, 2014, 73 : 787 - 804
  • [9] Evaluation and prediction of slope stability using machine learning approaches
    Shan Lin
    Hong Zheng
    Chao Han
    Bei Han
    Wei Li
    Frontiers of Structural and Civil Engineering, 2021, 15 : 821 - 833
  • [10] Evaluation and prediction of slope stability using machine learning approaches
    Shan LIN
    Hong ZHENG
    Chao HAN
    Bei HAN
    Wei LI
    Frontiers of Structural and Civil Engineering, 2021, (04) : 821 - 833