Thermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentials

被引:75
|
作者
Verdi, Carla [1 ]
Karsai, Ferenc [2 ]
Liu, Peitao [2 ]
Jinnouchi, Ryosuke [3 ]
Kresse, Georg [1 ,2 ]
机构
[1] Univ Vienna, Fac Phys, Computat Mat Phys, Kolingasse 14-16, A-1090 Vienna, Austria
[2] VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria
[3] Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan
基金
奥地利科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; ROOM-TEMPERATURE; SINGLE-CRYSTALS; CONDUCTIVITY; ZRO2;
D O I
10.1038/s41524-021-00630-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine-learned interatomic potentials enable realistic finite temperature calculations of complex materials properties with first-principles accuracy. It is not yet clear, however, how accurately they describe anharmonic properties, which are crucial for predicting the lattice thermal conductivity and phase transitions in solids and, thus, shape their technological applications. Here we employ a recently developed on-the-fly learning technique based on molecular dynamics and Bayesian inference in order to generate an interatomic potential capable to describe the thermodynamic properties of zirconia, an important transition metal oxide. This machine-learned potential accurately captures the temperature-induced phase transitions below the melting point. We further showcase the predictive power of the potential by calculating the heat transport on the basis of Green-Kubo theory, which allows to account for anharmonic effects to all orders. This study indicates that machine-learned potentials trained on the fly offer a routine solution for accurate and efficient simulations of the thermodynamic properties of a vast class of anharmonic materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Thermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentials
    Carla Verdi
    Ferenc Karsai
    Peitao Liu
    Ryosuke Jinnouchi
    Georg Kresse
    [J]. npj Computational Materials, 7
  • [2] Machine-learned interatomic potentials for alloys and alloy phase diagrams
    Rosenbrock, Conrad W.
    Gubaev, Konstantin
    Shapeev, Alexander V.
    Partay, Livia B.
    Bernstein, Noam
    Csanyi, Gabor
    Hart, Gus L. W.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [3] Machine-learned interatomic potentials for alloys and alloy phase diagrams
    Conrad W. Rosenbrock
    Konstantin Gubaev
    Alexander V. Shapeev
    Livia B. Pártay
    Noam Bernstein
    Gábor Csányi
    Gus L. W. Hart
    [J]. npj Computational Materials, 7
  • [4] How to validate machine-learned interatomic potentials
    Morrow, Joe D.
    Gardner, John L. A.
    Deringer, Volker L.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (12):
  • [5] α-β phase transition of zirconium predicted by on-the-fly machine-learned force field
    Liu, Peitao
    Verdi, Carla
    Karsai, Ferenc
    Kresse, Georg
    [J]. PHYSICAL REVIEW MATERIALS, 2021, 5 (05)
  • [6] A FRAMEWORK FOR A GENERALIZATION ANALYSIS OF MACHINE-LEARNED INTERATOMIC POTENTIALS
    Ortner, Christoph
    Wang, Yangshuai
    [J]. MULTISCALE MODELING & SIMULATION, 2023, 21 (03): : 1053 - 1080
  • [7] Simple machine-learned interatomic potentials for complex alloys
    Byggmastar, J.
    Nordlund, K.
    Djurabekova, F.
    [J]. PHYSICAL REVIEW MATERIALS, 2022, 6 (08)
  • [8] Machine-learned interatomic potentials: Recent developments and prospective applications
    Eyert, Volker
    Wormald, Jonathan
    Curtin, William A.
    Wimmer, Erich
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5079 - 5094
  • [9] Machine-learned interatomic potentials: Recent developments and prospective applications
    Volker Eyert
    Jonathan Wormald
    William A. Curtin
    Erich Wimmer
    [J]. Journal of Materials Research, 2023, 38 : 5079 - 5094
  • [10] Phase Transitions in Inorganic Halide Perovskites from Machine-Learned Potentials
    Fransson, Erik
    Wiktor, Julia
    Erhart, Paul
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (28): : 13773 - 13781