Utilizing Minimal Relevance Feedback for Ad Hoc Retrieval

被引:0
|
作者
Krikon, Eyal [1 ]
Kurland, Oren [1 ]
机构
[1] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
关键词
language models; passages; relevance feedback;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using relevance feedback can significantly improve (ad hoc) retrieval effectiveness. Yet, if little feedback is available, effectively exploiting it is a challenge. To that end, we present a novel approach that utilizes document passages. Empirical evaluation demonstrates the merits of the approach.
引用
收藏
页码:1099 / 1100
页数:2
相关论文
共 50 条
  • [1] A Comparative Study of Pseudo Relevance Feedback for Ad-hoc Retrieval
    Hui, Kai
    He, Ben
    Luo, Tiejian
    Wang, Bin
    [J]. ADVANCES IN INFORMATION RETRIEVAL THEORY, 2011, 6931 : 318 - +
  • [2] NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval
    Li, Canjia
    Sun, Yingfei
    He, Ben
    Wang, Le
    Hui, Kai
    Yates, Andrew
    Sun, Le
    Xu, Jungang
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 4482 - 4491
  • [3] Utilizing Relevance Feedback in Fusion-Based Retrieval
    Rabinovich, Ella
    Rom, Ofri
    Kurland, Oren
    [J]. SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, : 313 - 322
  • [4] Modeling Diverse Relevance Patterns in Ad-hoc Retrieval
    Fan, Yixing
    Guo, Jiafeng
    Lan, Yanyan
    Xu, Jun
    Zhai, Chengxiang
    Cheng, Xueqi
    [J]. ACM/SIGIR PROCEEDINGS 2018, 2018, : 375 - 384
  • [5] Relevance-based entity selection for ad hoc retrieval
    Ensan, Faezeh
    Al-Obeidat, Feras
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2019, 56 (05) : 1645 - 1666
  • [6] A Deep Relevance Matching Model for Ad-hoc Retrieval
    Guo, Jiafeng
    Fan, Yixing
    Ai, Qingyao
    Croft, W. Bruce
    [J]. CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 55 - 64
  • [7] Learning deep relevance couplings for ad-hoc document retrieval
    Hao, Shufeng
    Shi, Chongyang
    Cao, Longbing
    Niu, Zhendong
    Guo, Ping
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183
  • [8] Improving Text Retrieval Accuracy by Using a Minimal Relevance Feedback
    [J]. Napoletano, P. (napoletano@disco.unimib.it), 1600, Springer Verlag (348):
  • [9] XFIRM at INEX 2005: Ad-hoc and relevance feedback tracks
    Sauvagnat, Karen
    Hlaoua, Lobna
    Boughanem, Mohand
    [J]. ADVANCES IN XML INFORMATION RETRIEVAL AND EVALUATION, 2006, 3977 : 88 - 103
  • [10] Utilizing passage-based language models for ad hoc document retrieval
    Michael Bendersky
    Oren Kurland
    [J]. Information Retrieval, 2010, 13 : 157 - 187