On the boundary behavior of Kahler-Einstein metrics on log canonical pairs

被引:5
|
作者
Guenancia, Henri [1 ]
Wu, Damin [2 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[2] Univ Connecticut, Dept Math, 196 Auditorium Rd, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
MONGE-AMPERE EQUATION; RIEMANNIAN MANIFOLDS; RICCI CURVATURE; SINGULARITIES;
D O I
10.1007/s00208-015-1306-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundary behavior of the negatively curved Kahler-Einstein metric attached to a log canonical pair (X, D) such that K-X + D is ample. In the case where X is smooth and D has simple normal crossings support (but possibly negative coefficients), we provide a very precise estimate on the potential of the KE metric near the boundary D. In the more general singular case (D being assumed effective though), we show that the KE metric has mixed cone and cusp singularities near D on the snc locus of the pair. As a corollary, we derive the behavior in codimension one of the KE metric of a stable variety.
引用
收藏
页码:101 / 120
页数:20
相关论文
共 50 条
  • [1] Kahler-Einstein Metrics on Stable Varieties and log Canonical Pairs
    Berman, Robert J.
    Guenancia, Henri
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (06) : 1683 - 1730
  • [2] Kahler-Einstein metrics near an isolated log-canonical singularity
    Datar, Ved
    Fu, Xin
    Song, Jian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (797): : 79 - 116
  • [3] On the boundary behavior of Kähler–Einstein metrics on log canonical pairs
    Henri Guenancia
    Damin Wu
    Mathematische Annalen, 2016, 366 : 101 - 120
  • [4] KAHLER-EINSTEIN METRICS WITH CONE SINGULARITIES ON KLT PAIRS
    Guenancia, Henri
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (05)
  • [5] Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties
    Berman, Robert J.
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 27 - 89
  • [6] Bubbling of Kahler-Einstein metrics
    Sun, Song
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (03) : 1317 - 1348
  • [7] A SURVEY ON KAHLER-EINSTEIN METRICS
    YAU, ST
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1984, 41 : 285 - 289
  • [8] Twisted Kahler-Einstein metrics
    Ross, Julius
    Szekelyhidi, Gabor
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 1025 - 1044
  • [9] Kahler-Einstein Metrics and Stability
    Chen, Xiuxiong
    Donaldson, Simon
    Sun, Song
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (08) : 2119 - 2125
  • [10] Coupled Kahler-Einstein Metrics
    Hultgren, Jakob
    Nystrom, D. Witt
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (21) : 6765 - 6796