Some generalisations of Schur's and Baer's theorem and their connection with homological algebra

被引:1
|
作者
Donadze, Guram [1 ,2 ]
Garcia-Martinez, Xabier [3 ,4 ]
机构
[1] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
[2] Georgian Tech Univ, Inst Cybernet, Sandro Euli Str 5, GE-0186 Tbilisi, Georgia
[3] Univ Vigo, Dept Matemat, Esc Sup Enx Informat, Campus Ourense, E-32004 Orense, Spain
[4] Vrije Univ Brussel, Fac Engn, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Baer's theorem; non-abelian tensor product; Schur multiplier; Schur's theorem; ABELIAN TENSOR PRODUCT;
D O I
10.1002/mana.201900495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Schur's theorem and its generalisation, Baer's theorem, are distinguished results in group theory, connecting the upper central quotients with the lower central series. The aim of this paper is to generalise these results in two different directions, using novel methods related with the non-abelian tensor product. In particular, we prove a version of Schur-Baer theorem for finitely generated groups. Then, we apply these newly obtained results to describe the k-nilpotent multiplier, for k >= 2, and other invariants of groups.
引用
收藏
页码:2129 / 2139
页数:11
相关论文
共 50 条
  • [1] ON SOME GENERALIZATIONS OF BAER'S THEOREM
    Kurdachenko, L. A.
    Pypka, O. O.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2014, 6 (02) : 310 - 316
  • [2] A Quadratic Mapping Related to Fregier's Theorem and Some Generalisations
    Weiss, Gunter
    Pech, Pavel
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2021, 25 (01): : 127 - 137
  • [3] A COMBINATORIAL THEOREM ON THE CARTAN INVARIANTS OF THE SCHUR ALGEBRA S(B+)
    KOVACEC, A
    SANTANA, AP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 198 : 79 - 91
  • [4] Two generalisations of Leighton's theorem
    Shepherd, Sam
    Gardam, Giles
    Woodhouse, Daniel J.
    GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (03) : 743 - 778
  • [5] A generalization of Baer's theorem
    Zhang, Xinjian
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (11) : 4971 - 4973
  • [6] A VARIANT OF BAER'S THEOREM
    Zusmanovich, Pasha
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (03) : 929 - 932
  • [7] A converse of Baer's theorem
    Hatamian R.
    Hassanzadeh M.
    Kayvanfar S.
    Ricerche di Matematica, 2014, 63 (1) : 183 - 187
  • [8] The converse of Schur's theorem
    Niroomand, Peyman
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 401 - 403
  • [9] Polynomial Schur's Theorem
    Liu, Hong
    Pach, Peter Pal
    Sandor, Csaba
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1357 - 1384
  • [10] The converse of Schur’s theorem
    Peyman Niroomand
    Archiv der Mathematik, 2010, 94 : 401 - 403