CNN-based Method for Segmenting Tree Bark Surface Singularites

被引:0
|
作者
Delconte, Florian [1 ]
Ngo, Phuc [1 ]
Kerautret, Bertrand [2 ]
Debled-Rennesson, Isabelle [1 ]
Nguyen, Van-Tho [3 ]
Constant, Thiery [4 ]
机构
[1] Univ Lorraine, LORIA, ADAGIo, Nancy, France
[2] Univ Lumiere Lyon 2, LIRIS, Imagine, Lyon, France
[3] Univ Sherbrooke, Ctr Applicat & Rech Teledetect, Dept Appl Geomat, Sherbrooke, PQ, Canada
[4] Univ Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
来源
IMAGE PROCESSING ON LINE | 2022年 / 12卷
关键词
tree bark surface analysis; singularity segmentation; relief map; LiDAR; mesh centerline; neural network; U-Net;
D O I
10.5201/ipol.2022.369
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The analysis of trunk shape and, in particular, the geometric structures on the bark surface are of main interest for different applications linked to the wood industry or biological studies. Bark singularities are often external records of the history of the development of internal elements. The actors of the forest sector grade the trees by considering these singularities through standards. In this paper, we propose a method using terrestrial LiDAR data to automatically segment singularities on tree surfaces. It is based on the construction of a relief map combined with a convolutional neural network. The algorithms and the source code are available with an online demonstration allowing to test the defect detection without any software installation.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [1] CNN-Based Tree Species Identification from Bark Image
    Ido, Junya
    Saitoh, Takeshi
    [J]. TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [2] Deep CNN-Based Method for Segmenting Lung Fields in Digital Chest Radiographs
    Kaur, Simranpreet
    Hooda, Rahul
    Mittal, Ajay
    Akashdeep
    Sofat, Sanjeev
    [J]. ADVANCED INFORMATICS FOR COMPUTING RESEARCH, ICAICR 2017, 2017, 712 : 185 - 194
  • [3] A CNN-Based Method for Fruit Detection in Apple Tree Images
    Nesterov D.A.
    Shurygin B.M.
    Solovchenko A.E.
    Krylov A.S.
    Sorokin D.V.
    [J]. Computational Mathematics and Modeling, 2022, 33 (3) : 354 - 364
  • [4] CNN-based Tree Model Extraction
    Ben Alaya, Karim
    Czuni, Laszlo
    [J]. PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 616 - 620
  • [5] A CNN-BASED SEGMENTATION MODEL FOR SEGMENTING FOREGROUND BY A PROBABILITY MAP
    Luo, Kunming
    Meng, Fanman
    Wu, Qingbo
    Shi, Wen
    Guo, Lili
    [J]. 2017 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2017), 2017, : 17 - 22
  • [6] A CNN-based vortex identification method
    Liang Deng
    Yueqing Wang
    Yang Liu
    Fang Wang
    Sikun Li
    Jie Liu
    [J]. Journal of Visualization, 2019, 22 : 65 - 78
  • [7] A CNN-based vortex identification method
    Deng, Liang
    Wang, Yueqing
    Liu, Yang
    Wang, Fang
    Li, Sikun
    Liu, Jie
    [J]. JOURNAL OF VISUALIZATION, 2019, 22 (01) : 65 - 78
  • [8] A CNN-BASED METHOD FOR SAR IMAGE DESPECKLING
    Ma, Dejiao
    Zhang, Xiaoling
    Tang, Xinxin
    Ming, Jing
    Shi, Jun
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4272 - 4275
  • [9] A CNN-BASED PANSHARPENING METHOD WITH PERCEPTUAL LOSS
    Vitale, Sergio
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3105 - 3108
  • [10] AN UNSUPERVISED CNN-BASED HYPERSPECTRAL PANSHARPENING METHOD
    Guarino, G.
    Ciotola, M.
    Vivone, G.
    Poggi, G.
    Scarpa, G.
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5982 - 5985