Material Clustering Using Passive Millimeter-Wave Polarimetric Imagery

被引:13
|
作者
Su, Jinlong [1 ]
Tian, Yan [1 ,2 ]
Hu, Fei [1 ,2 ]
Cheng, Yayun [1 ]
Hu, Yan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Hubei, Peoples R China
[2] Natl Key Lab Sci & Technol Multispectral Informa, Wuhan 430074, Hubei, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2019年 / 11卷 / 01期
关键词
Passive millimeter-wave; passive degree of polarization; clustering; MATERIAL CLASSIFICATION;
D O I
10.1109/JPHOT.2018.2881287
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Passive millimeter-wave imaging has emerged as a useful tool in many remote sensing applications, including resource remote sensing, material classification, and target detection. This paper presents a method to classify specular objects based on their material composition from passive millimeter-wave polarimetric imagery. Passive degree of polarization (PDoP) is proposed and calculated by using the results of a passive millimeter-wave polarization measurement. The PDoP values of typical ground targets are further analyzed. Outdoor experiments are conducted, and the PDoP image is generated from the brightness temperature images. The PDoP values of pixels in the image are statistically analyzed, and the threshold values are set based on the statistical analysis results, then every pixel is recognized. Experimental results indicate that this method is highly effective for distinguishing among various materials of interest.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Polarization-based material classification technique using passive millimeter-wave polarimetric imagery
    Hu, Fei
    Cheng, Yayun
    Gui, Liangqi
    Wu, Liang
    Zhang, Xinyi
    Peng, Xiaohui
    Su, Jinlong
    [J]. APPLIED OPTICS, 2016, 55 (31) : 8690 - 8697
  • [2] Metal target detection method using passive millimeter-wave polarimetric imagery
    Tang, Fangzhou
    Gui, Liangqi
    Liu, Jinbang
    Chen, Ke
    Lang, Liang
    Cheng, Yayun
    [J]. OPTICS EXPRESS, 2020, 28 (09) : 13336 - 13351
  • [3] Polarimetric passive millimeter-wave sensing
    Wikner, D
    Samples, G
    [J]. PASSIVE MILLIMETER-WAVE IMAGING TECHNOLOGY V, 2001, 4373 : 86 - 93
  • [4] Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery
    Wilson, John P.
    Schuetz, Christopher A.
    Harrity, Charles E.
    Kozacik, Stephen
    Eng, David L. K.
    Prather, Dennis W.
    [J]. OPTICS EXPRESS, 2013, 21 (10): : 12899 - 12907
  • [5] POLARIMETRIC PASSIVE MILLIMETER-WAVE IMAGING OF SURFACE VESSELS
    Cheng, Yayun
    Tian, Xun
    Wu, Liang
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2159 - 2162
  • [6] Polarization ratio property and material classification method in passive millimeter-wave polarimetric imaging
    Cheng, Yayun
    Qi, Bo
    Liu, Siyuan
    Hu, Fei
    Gui, Liangqi
    Peng, Xiaohui
    [J]. MILLIMETRE WAVE AND TERAHERTZ SENSORS AND TECHNOLOGY IX, 2016, 9993
  • [7] Display of polarization information for passive millimeter-wave imagery
    Wilson, John P.
    Schuetz, Christopher A.
    Dillon, Thomas E.
    Eng, David L. K.
    Kozacik, Stephen
    Prather, Dennis W.
    [J]. OPTICAL ENGINEERING, 2012, 51 (09)
  • [8] Polarimetric passive millimeter-wave imagery from a sensor based on an optical up-conversion architecture
    Wilson, John P.
    Schuetz, Christopher A.
    Dillon, Thomas E.
    Martin, Richard D.
    Prather, Dennis W.
    [J]. PASSIVE AND ACTIVE MILLIMETER-WAVE IMAGING XV, 2012, 8362
  • [9] Material classification using passive polarimetric imagery
    Thilak, Vimal
    Creusere, Charles D.
    Voelz, David G.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 1817 - 1820
  • [10] Post-processing Techniques for Polarimetric Passive Millimeter Wave Imagery
    Wu, L.
    Zhu, J. Q.
    Peng, S. S.
    Xiao, Z. L.
    Wang, Y. K.
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2018, 33 (05): : 512 - 518