Undamped oscillations in fractional-order Duffing oscillator

被引:16
|
作者
Rostami, Mohammad [1 ]
Haeri, Mohammad [2 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[2] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
来源
SIGNAL PROCESSING | 2015年 / 107卷
关键词
Duffing equation; Oscillation; Fractional order differential equation; Parameter range; Describing function method; CHAOS; DYNAMICS; SYSTEM; DIFFUSION;
D O I
10.1016/j.sigpro.2014.03.042
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies undamped oscillations of fractional-order Duffing system. Stability theorems for fractional order systems are used to determine the characteristic polynomial of the system in order to find the parametric ranges for undamped oscillations in this system. We also derive relations for estimating the frequency and the amplitude of the oscillations in this system using a describing function method: Finally numerical simulation results are provided to justify the analysis. Published by Elsevier B.V.
引用
收藏
页码:361 / 367
页数:7
相关论文
共 50 条
  • [1] Effects of delay, noises and fractional-order on the peaks in antiperiodic oscillations in Duffing oscillator
    H. Simo
    R. Thepi Siewe
    J. K. Dutt
    P. Woafo
    [J]. Indian Journal of Physics, 2020, 94 : 2005 - 2015
  • [2] Effects of delay, noises and fractional-order on the peaks in antiperiodic oscillations in Duffing oscillator
    Simo, H.
    Siewe, R. T.
    Dutt, J. K.
    Woafo, P.
    [J]. INDIAN JOURNAL OF PHYSICS, 2020, 94 (12) : 2005 - 2015
  • [3] Primary resonance of Duffing oscillator with fractional-order derivative
    Shen, Yongjun
    Yang, Shaopu
    Xing, Haijun
    Gao, Guosheng
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) : 3092 - 3100
  • [4] Threshold for Chaos of a Duffing Oscillator with Fractional-Order Derivative
    Xing, Wuce
    Chen, Enli
    Chang, Yujian
    Wang, Meiqi
    [J]. SHOCK AND VIBRATION, 2019, 2019
  • [5] Subharmonic Resonance of Duffing Oscillator With Fractional-Order Derivative
    Nguyen Van Khang
    Truong Quoc Chien
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (05):
  • [6] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Du, Lin
    Zhao, Yunping
    Lei, Youming
    Hu, Jian
    Yue, Xiaole
    [J]. NONLINEAR DYNAMICS, 2018, 92 (04) : 1921 - 1933
  • [7] Superharmonic Resonance of Fractional-Order Mathieu-Duffing Oscillator
    Niu, Jiangchuan
    Li, Xiaofeng
    Xing, Haijun
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (07):
  • [8] Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator
    Yongjun Shen
    Hang Li
    Shaopu Yang
    Mengfei Peng
    Yanjun Han
    [J]. Nonlinear Dynamics, 2020, 102 : 1485 - 1497
  • [9] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Lin Du
    Yunping Zhao
    Youming Lei
    Jian Hu
    Xiaole Yue
    [J]. Nonlinear Dynamics, 2018, 92 : 1921 - 1933
  • [10] Pitchfork bifurcation and vibrational resonance in a fractional-order Duffing oscillator
    Yang, J. H.
    Sanjuan, M. A. F.
    Xiang, W.
    Zhu, H.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2013, 81 (06): : 943 - 957