A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells

被引:37
|
作者
Gu, Binbin [1 ]
Sunarso, Jaka [2 ]
Zhang, Yuan [1 ]
Song, Yufei [1 ]
Yang, Guangming [1 ]
Zhou, Wei [1 ]
Shao, Zongping [1 ,3 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Nanjing 210009, Jiangsu, Peoples R China
[2] Swinburne Univ Technol, Fac Engn Comp & Sci, Res Ctr Sustainable Technol, Jalan Simpang Tiga, Kuching 93350, Sarawak, Malaysia
[3] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
关键词
Solid oxide fuel cell; Composite cathode; CO2; resistance; Stability; DOPED SRCOO3-DELTA; OXYGEN PERMEATION; PEROVSKITE; MICROSTRUCTURE; SOFC; DEGRADATION; MECHANISMS; ELECTRODE; MEMBRANE;
D O I
10.1016/j.jpowsour.2018.10.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2-resistant perovskite cathode has a significant role in solid oxide fuel cell (SOFC) application particularly for operation in an air atmosphere contains higher than normal amount of CO2 such as in single-chamber SOFC (SC-SOFC). This work features a systematic study of the electrochemical performance of SrCo(0.8)Nb(0.1)Tac(0.1)O(3-delta) (SCNT)-Ce0.9Gd0.1O2-delta (GDC) composite cathode under CO2 exposure for SOFC operation in low-temperature (LT, 500 degrees C and below) and intermediate-temperature (IT, 500-700 degrees C) ranges. The complementary results from powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, in situ high temperature XRD, electrochemical impedance spectroscopy, and the single cell test show that SCNT-GDC cathode exhibit slightly lower electrochemical performance but higher CO2 resistance than SCNT, which enables practical SOFC application. At 550 degrees C, SCNT-GDC-based single cell has a peak power density of 630 mW cm(-2) and reduces to a stable power density of 525 mW cm(-2) after exposure to air containing 1 vol% CO2 for 2 h. The collective characterization and electrochemical data presented here highlight the potential of SCNT-GDC composite cathode for use in SC-SOFC and to enhance the performance stability in LT and IT-SOFCs.
引用
收藏
页码:124 / 131
页数:8
相关论文
共 50 条
  • [31] Phase Transition of a Cobalt-Free Perovskite as a High-Performance Cathode for Intermediate-Temperature Solid Oxide Fuel Cells
    Jiang, Shanshan
    Zhou, Wei
    Niu, Yingjie
    Zhu, Zhonghua
    Shao, Zongping
    CHEMSUSCHEM, 2012, 5 (10) : 2023 - 2031
  • [32] Co-doped Sr2FeNbO6 as cathode materials for intermediate-temperature solid oxide fuel cells
    Xia, Tian
    Lin, Nan
    Zhao, Hui
    Huo, Lihua
    Wang, Jingping
    Grenier, Jean-Claude
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 291 - 296
  • [33] BaFe0.6Ce0.1Co0.3O3-δ as a high-performance cathode for intermediate-temperature solid oxide fuel cells
    Zhang, Limin
    Li, Juan
    Yang, Jing
    Shen, Hui
    ELECTROCHIMICA ACTA, 2015, 154 : 244 - 248
  • [34] Tradeoff optimization of electrochemical performance and thermal expansion for Co-based cathode material for intermediate-temperature solid oxide fuel cells
    Park, Seonhye
    Choi, Sihyuk
    Shin, Jeeyoung
    Kim, Guntae
    ELECTROCHIMICA ACTA, 2014, 125 : 683 - 690
  • [35] Advancements in composite cathodes for intermediate-temperature solid oxide fuel cells: A comprehensive review
    Yadav, Anil Kumar
    Sinha, Shailendra
    Kumar, Anil
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 1080 - 1093
  • [36] Electrolyte materials for intermediate-temperature solid oxide fuel cells
    Shi, Huangang
    Su, Chao
    Ran, Ran
    Cao, Jiafeng
    Shao, Zongping
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2020, 30 (06) : 764 - 774
  • [37] A highly active and stable cathode for oxygen reduction in intermediate-temperature solid oxide fuel cells
    Ding, Xifeng
    Li, Mingze
    Zhao, Xinyu
    Ding, Liming
    Yan, Yufei
    Wang, Lixi
    Wang, Zhihong
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (03): : 1168 - 1179
  • [38] Characterization of SmBaCoFeO5+δ Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells
    Lu, S.
    Meng, X.
    Long, G.
    Wang, X.
    Ji, Y.
    SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 2507 - 2512
  • [39] Impregnated Nd2NiO4+δ- scandia stabilized zirconia composite cathode for intermediate-temperature solid oxide fuel cells
    Chen, Ting
    Zhou, Yucun
    Yuan, Chun
    Liu, Minquan
    Meng, Xie
    Zhan, Zhongliang
    Xia, Changrong
    Wang, Shaorong
    JOURNAL OF POWER SOURCES, 2014, 269 : 812 - 817
  • [40] Materials for Intermediate-Temperature Solid-Oxide Fuel Cells
    Kilner, John A.
    Burriel, Monica
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 44, 2014, 44 : 365 - 393