Differential inequalities for spirallike and strongly starlike functions

被引:1
|
作者
Cho, Nak Eun [1 ]
Kwon, Oh Sang [2 ]
Sim, Young Jae [2 ]
机构
[1] Pukyong Natl Univ, Dept Appl Math, Busan 48513, South Korea
[2] Kyungsung Univ, Dept Math, Busan 48434, South Korea
基金
新加坡国家研究基金会;
关键词
Caratheodory functions; Differential subordination; Starlike functions; Spirallike functions; Strongly starlike functions; SUFFICIENT CONDITIONS; ORDER;
D O I
10.1186/s13662-021-03670-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using a technique of the first-order differential subordination, we find several sufficient conditions for an analytic function p such that p(0) = 1 to satisfy Re{e(i beta)p(z)} > gamma or vertical bar arg{p(z) - gamma}vertical bar < delta for all z is an element of D, where beta is an element of(-pi/2, pi/2), gamma is an element of [0, cos beta), delta is an element of (0, 1] and D := {z is an element of C : vertical bar z vertical bar < 1}. The results obtained here will be applied to find some conditions for spirallike functions and strongly starlike functions in D.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Differential inequalities for spirallike and strongly starlike functions
    Nak Eun Cho
    Oh Sang Kwon
    Young Jae Sim
    [J]. Advances in Difference Equations, 2021
  • [2] Harmonic spirallike functions and harmonic strongly starlike functions
    Xiu-Shuang Ma
    Saminathan Ponnusamy
    Toshiyuki Sugawa
    [J]. Monatshefte für Mathematik, 2022, 199 : 363 - 375
  • [3] Harmonic spirallike functions and harmonic strongly starlike functions
    Ma, Xiu-Shuang
    Ponnusamy, Saminathan
    Sugawa, Toshiyuki
    [J]. MONATSHEFTE FUR MATHEMATIK, 2022, 199 (02): : 363 - 375
  • [4] Correspondence between spirallike functions and starlike functions
    Kim, Yong Chan
    Sugawa, Toshiyuki
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (2-3) : 322 - 331
  • [5] Differential subordination for certain strongly starlike functions
    Saliu, Afis
    Jabeen, Kanwal
    Ravichandran, V.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (01) : 1 - 18
  • [6] Differential subordination for certain strongly starlike functions
    Afis Saliu
    Kanwal Jabeen
    V. Ravichandran
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 1 - 18
  • [7] Differential inequalities and criteria for starlike and univalent functions
    Obradovic, M.
    Ponnusamy, S.
    Singh, V.
    Vasundhra, P.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (01) : 303 - 317
  • [8] Differential inequalities and criteria for starlike and convex functions
    Billing, Sukhwinder Singh
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2014, 59 (02): : 191 - 198
  • [9] On some differential inequalities for multivalent starlike and convex functions
    Jurasinska, Renata
    Nunokawa, Mamoru
    Sokol, Janusz
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 161
  • [10] SHARP INEQUALITIES FOR HERMITIAN TOEPLITZ. DETERMINANTS FOR STRONGLY STARLIKE AND STRONGLY CONVEX FUNCTIONS
    Kowalczyk, Bogumila
    Lecko, Adam
    Smiarowska, Barbara
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (01): : 323 - 332