ON THE P-HARMONIC RADII OF CIRCULAR SECTORS

被引:0
|
作者
Afanaseva-Grigoreva, A. S. [1 ]
Prilepkina, E. G. [1 ,2 ]
机构
[1] Far Eastern Fed Univ, Far Eastern Ctr Res & Educ Math, 10 Ajax Bay, Vladivostok 690922, Russia
[2] FEBRAS, Inst Appl Math, 7 Radio St, Vladivostok 690041, Russia
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2021年 / 10卷 / 03期
关键词
condenser capacities; conformal radius; harmonic radius; family of curves; CAPACITY;
D O I
10.15393/j3.art.2021.10950
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the property of logarithmic concavity of the conformal radius of a circular sector (considered as a function of the angle) extends to the domains of Euclidean space. In this case, the conformal radius is replaced by p-harmonic one, and the fundamental solution of the Laplace p-equation acts as logarithm. In the case of p = 2, the presence of an asymptotic formula for the capacity of a degenerate condenser allows us to generalize this result to the case of a finite set of points. The method of the proof leads to the solution of one particular case of an open problem of A. Yu. Solynin.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 50 条
  • [1] Estimates of p-harmonic functions in planar sectors
    Lundstrom, Niklas L. P.
    Singh, Jesper
    ARKIV FOR MATEMATIK, 2023, 61 (01): : 141 - 175
  • [2] The p-harmonic approximation and the regularity of p-harmonic maps
    Frank Duzaar
    Giuseppe Mingione
    Calculus of Variations and Partial Differential Equations, 2004, 20 : 235 - 256
  • [3] The p-harmonic approximation and the regularity of p-harmonic maps
    Duzaar, F
    Mingione, G
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) : 235 - 256
  • [4] On p-harmonic morphisms
    Loubeau, E
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 12 (03) : 219 - 229
  • [5] p-harmonic diffeomorphisms
    El Soufi, A
    Sandier, E
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1998, 6 (02) : 161 - 169
  • [6] REDUCED p-MODULUS, p-HARMONIC RADIUS AND p-HARMONIC GREEN'S MAPPINGS
    Levitskii, B. E.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 (02): : 82 - 97
  • [7] ON A SUBCLASS OF p-HARMONIC MAPPINGS
    Porwal, Saurabh
    Dixit, K. K.
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (03): : 313 - 325
  • [8] P-HARMONIC FUNCTIONS IN THE PLANE
    MANFREDI, JJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (02) : 473 - 479
  • [9] Inverting the p-harmonic operator
    Greco, L
    Iwaniec, T
    Sbordone, C
    MANUSCRIPTA MATHEMATICA, 1997, 92 (02) : 249 - 258
  • [10] On the dimension of p-harmonic measure
    Bennewitz, B
    Lewis, JL
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2005, 30 (02) : 459 - 505