On random-parameter count models for out-of-sample crash prediction: Accounting for the variances of random-parameter distributions

被引:30
|
作者
Xu, Pengpeng [1 ,2 ]
Zhou, Hanchu [3 ,4 ]
Wong, S. C. [1 ,5 ]
机构
[1] Univ Hong Kong, Dept Civil Engn, Hong Kong, Peoples R China
[2] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou, Peoples R China
[3] Cent South Univ, Sch Traff & Transportat Engn, Changsha, Hunan, Peoples R China
[4] City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
[5] Guangdong Hong Kong Macau Joint Lab Smart Cities, Hong Kong, Peoples R China
来源
关键词
Random parameters; Crash frequency; Predictive performance; Cross validation; Numerical experiment; DEEP LEARNING APPROACH; SPATIAL HETEROGENEITY; STATISTICAL-ANALYSIS; SAFETY;
D O I
10.1016/j.aap.2021.106237
中图分类号
TB18 [人体工程学];
学科分类号
1201 ;
摘要
One challenge faced by the random-parameter count models for crash prediction is the unavailability of unique coefficients for out-of-sample observations. The means of the random-parameter distributions are typically used without explicit consideration of the variances. In this study, by virtue of the Taylor series expansion, we proposed a straightforward yet analytic solution to include both the means and variances of random parameters for unbiased prediction. We then theoretically quantified the systematic bias arising from the omission of the variances of random parameters. Our numerical experiment further demonstrated that simply using the means of random parameters to predict the number of crashes for out-of-sample observations is fundamentally incorrect, which necessarily results in the underprediction of crash counts. Given the widespread use and ongoing prevalence of the random-parameter approach in crash analysis, special caution should be taken to avoid this silent pitfall when applying it for predictive purposes.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Analyzing injury crashes using random-parameter bivariate regression models
    Dong, Chunjiao
    Clarke, David B.
    Nambisan, Shashi S.
    Huang, Baoshan
    [J]. TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2016, 12 (09) : 794 - 810
  • [2] Comparison and analysis of crash frequency and rate in cross-river tunnels using random-parameter models
    Chen, Shengdi
    Chen, Yao
    Xing, Yingying
    [J]. JOURNAL OF TRANSPORTATION SAFETY & SECURITY, 2022, 14 (02) : 280 - 304
  • [3] Roundabout Accident Prediction Model: Random-Parameter Negative Binomial Approach
    Kamla, Jwan
    Parry, Tony
    Dawson, Andrew
    [J]. TRANSPORTATION RESEARCH RECORD, 2016, (2585) : 11 - 19
  • [4] Successive identification of the random-parameter linear dynamic system
    Kashkovskii, D. V.
    Konev, V. V.
    [J]. AUTOMATION AND REMOTE CONTROL, 2008, 69 (08) : 1344 - 1356
  • [5] STABILITY OF RANDOM-PARAMETER AND RANDOM-STRUCTURE LINEAR-SYSTEMS
    PAKSHIN, PV
    [J]. SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1991, 29 (01): : 128 - 133
  • [6] Construction of the Lyapunov functions for discrete random-parameter systems
    Barabanov, IN
    [J]. AUTOMATION AND REMOTE CONTROL, 1995, 56 (11) : 1529 - 1537
  • [7] INFERENCE PROBLEMS FOR RANDOM-PARAMETER STOCHASTIC-PROCESSES
    LEHOCZKY, JP
    [J]. ADVANCES IN APPLIED PROBABILITY, 1985, 17 (02) : 252 - 253
  • [8] Successive identification of the random-parameter linear dynamic system
    D. V. Kashkovskii
    V. V. Konev
    [J]. Automation and Remote Control, 2008, 69 : 1344 - 1356
  • [9] A study of factors affecting intersection crash frequencies using random-parameter multivariate zero-inflated models
    Dong, Chunjiao
    Shi, Jing
    Huang, Baoshan
    Chen, Xiaoming
    Ma, Zhuanglin
    [J]. INTERNATIONAL JOURNAL OF INJURY CONTROL AND SAFETY PROMOTION, 2017, 24 (02) : 208 - 221
  • [10] A random-parameter height-dbh model for cherrybark oak
    Lynch, TB
    Holley, AG
    Stevenson, DJ
    [J]. SOUTHERN JOURNAL OF APPLIED FORESTRY, 2005, 29 (01): : 22 - 26