TESTING GENERALIZED REGRESSION MONOTONICITY

被引:12
|
作者
Hsu, Yu-Chin [1 ,2 ,3 ]
Liu, Chu-An [1 ]
Shi, Xiaoxia [4 ]
机构
[1] Acad Sinica, Taipei, Taiwan
[2] Natl Cent Univ, Taoyuan, Taiwan
[3] Natl Chengchi Univ, Taipei, Taiwan
[4] Univ Wisconsin, Madison, WI 53706 USA
关键词
INFERENCE;
D O I
10.1017/S0266466618000439
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a test for a generalized regression monotonicity (GRM) hypothesis. The GRM hypothesis is the sharp testable implication of the monotonicity of certain latent structures, as we show in this article. Examples include the monotonicity of the conditional mean function when only interval data are available for the dependent variable and the monotone instrumental variable assumption of Manski and Pepper (2000). These instances of latent monotonicity can be tested using our test. Moreover, the GRM hypothesis includes regression monotonicity and stochastic monotonicity as special cases. Thus, our test also serves as an alternative to existing tests for those hypotheses. We show that our test controls the size uniformly over a broad set of data generating processes asymptotically, is consistent against fixed alternatives, and has nontrivial power against some n(-1/2) local alternatives.
引用
收藏
页码:1146 / 1200
页数:55
相关论文
共 50 条
  • [1] Testing monotonicity of regression
    Ghosal, S
    Sen, A
    van der Vaart, W
    ANNALS OF STATISTICS, 2000, 28 (04): : 1054 - 1082
  • [2] Testing monotonicity of regression
    Bowman, AW
    Jones, MC
    Gijbels, I
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (04) : 489 - 500
  • [3] Testing strict monotonicity in nonparametric regression
    Birke M.
    Dette H.
    Mathematical Methods of Statistics, 2007, 16 (2) : 110 - 123
  • [4] TESTING REGRESSION MONOTONICITY IN ECONOMETRIC MODELS
    Chetverikov, Denis
    ECONOMETRIC THEORY, 2019, 35 (04) : 729 - 776
  • [5] Testing of monotonicity in parametric regression models
    Doveh, E
    Shapiro, A
    Feigin, PD
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 107 (1-2) : 289 - 306
  • [6] Testing for monotonicity of a regression mean by calibrating for linear functions
    Hall, P
    Heckman, NE
    ANNALS OF STATISTICS, 2000, 28 (01): : 20 - 39
  • [7] Testing the monotonicity or convexity of a function using regression splines
    Wang, Jianqiang C.
    Meyer, Mary C.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (01): : 89 - 107
  • [8] Testing Monotonicity of Regression Functions - An Empirical Process Approach
    Birke, Melanie
    Neumeyer, Natalie
    SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (03) : 438 - 454
  • [9] (Φ, p)-MONOTONICITY AND GENERALIZED (Φ, p)-MONOTONICITY
    Antczak, Tadeusz
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (01): : 237 - 255
  • [10] Testing monotonicity of conditional treatment effects under regression discontinuity designs
    Hsu, Yu-Chin
    Shen, Shu
    JOURNAL OF APPLIED ECONOMETRICS, 2021, 36 (03) : 346 - 366