Asymptotic Distribution and Simultaneous Confidence Bands for Ratios of Quantile Functions

被引:0
|
作者
Dunker, Fabian [1 ]
Klasen, Stephan [2 ]
Krivobokova, Tatyana [3 ]
机构
[1] Univ Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New Zealand
[2] Georg August Univ Gottingen, Dept Econ, Pl Gottinger Sieben 3, D-37073 Gottingen, Germany
[3] Georg August Univ Gottingen, Inst Math Stochast, Goldschmidtstr 7, D-37077 Gottingen, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2019年 / 13卷 / 02期
关键词
Growth incidence curve; simultaneous confidence bands; quantile processes; SMOOTH QUANTILE; NONPARAMETRIC-ESTIMATION; STATISTICAL-INFERENCE; GROWTH; ESTIMATORS; MODELS; INCOME;
D O I
10.1214/19-EJS1628
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ratios of medians or other suitable quantiles of two distributions are widely used in medical research to compare treatment and control groups or in economics to compare various economic variables when repeated cross-sectional data are available. Inspired by the so-called growth incidence curves introduced in poverty research, we argue that the ratio of quantile functions is a more appropriate and informative tool to compare two distributions. We present an estimator for the ratio of quantile functions and develop corresponding simultaneous confidence bands, which allow to assess significance of certain features of the quantile functions ratio. Derived simultaneous confidence bands rely on the asymptotic distribution of the quantile functions ratio and do not require re-sampling techniques. The performance of the simultaneous confidence bands is demonstrated in simulations. Analysis of expenditure data from Uganda in years 1999, 2002 and 2005 illustrates the relevance of our approach.
引用
收藏
页码:4391 / 4415
页数:25
相关论文
共 50 条
  • [1] Smooth simultaneous confidence bands for cumulative distribution functions
    Wang, Jiangyan
    Cheng, Fuxia
    Yang, Lijian
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (02) : 395 - 407
  • [2] Simultaneous confidence bands for ratios of survival functions via empirical likelihood
    McKeague, IW
    Zhao, YC
    [J]. STATISTICS & PROBABILITY LETTERS, 2002, 60 (04) : 405 - 415
  • [3] Simultaneous confidence bands for extremal quantile regression with splines
    Takuma Yoshida
    [J]. Extremes, 2020, 23 : 117 - 149
  • [4] Simultaneous confidence bands for extremal quantile regression with splines
    Yoshida, Takuma
    [J]. EXTREMES, 2020, 23 (01) : 117 - 149
  • [5] Simultaneous confidence bands for expectile functions
    Guo, Mengmeng
    Haerdle, Wolfgang Karl
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2012, 96 (04) : 517 - 541
  • [6] Simultaneous confidence bands for isotonic functions
    Sampson, Allan R.
    Singh, Harshinder
    Whitaker, Lyn R.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) : 828 - 842
  • [7] Simultaneous confidence bands for expectile functions
    Mengmeng Guo
    Wolfgang Karl Härdle
    [J]. AStA Advances in Statistical Analysis, 2012, 96 : 517 - 541
  • [8] Comparing quantile residual life functions by confidence bands
    Franco-Pereira, Alba M.
    Lillo, Rosa E.
    Romo, Juan
    [J]. LIFETIME DATA ANALYSIS, 2012, 18 (02) : 195 - 214
  • [9] Comparing quantile residual life functions by confidence bands
    Alba M. Franco-Pereira
    Rosa E. Lillo
    Juan Romo
    [J]. Lifetime Data Analysis, 2012, 18 : 195 - 214
  • [10] Estimation of the simultaneous confidence regions for the ratios of quantile residual lifetimes
    Chang, Yu-Mei
    Shen, Pao-Sheng
    Jiang, Yu-Ru
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (13) : 2581 - 2596