The inverse problem on Roulettes in normed planes

被引:1
|
作者
Balestro, Vitor [1 ]
Horvath, Akos G. [2 ]
Martini, Horst [3 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, BR-24210201 Niteroi, RJ, Brazil
[2] Budapest Univ Technol & Econ, Dept Geometry, H-1521 Budapest, Hungary
[3] Tech Univ Chemnitz, Fac Math, D-09107 Chemnitz, Germany
关键词
Angle measure; Birkhoff orthogonality; Curvatures; Cycloids; Motion group; Roulettes; 46B20; 51M05; 52A21; 53A04; 53A17; ANGLE MEASURES; MINKOWSKI;
D O I
10.1007/s13324-019-00343-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate an inverse problem referring to roulettes in normed planes, thus generalizing analogous results of Bloom and Whitt on the Euclidean subcase. More precisely, we prove that a given curve can be traced by rolling another curve along a line if two natural conditions are satisfied. Our access involves details from a metric theory of trigonometric functions, which was recently developed for normed planes. Based on this, our approach differs from other ones in the literature.
引用
收藏
页码:2413 / 2434
页数:22
相关论文
共 50 条
  • [1] The inverse problem on Roulettes in normed planes
    Vitor Balestro
    Ákos G. Horváth
    Horst Martini
    [J]. Analysis and Mathematical Physics, 2019, 9 : 2413 - 2434
  • [2] Angle measures, general rotations, and roulettes in normed planes
    Balestro, Vitor
    Horvath, Akos G.
    Martini, Horst
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (04) : 549 - 575
  • [3] Angle measures, general rotations, and roulettes in normed planes
    Vitor Balestro
    Ákos G. Horváth
    Horst Martini
    [J]. Analysis and Mathematical Physics, 2017, 7 : 549 - 575
  • [4] The local Steiner problem in normed planes
    Swanepoel, KJ
    [J]. NETWORKS, 2000, 36 (02) : 104 - 113
  • [5] The Fermat–Torricelli Problem in Normed Planes and Spaces
    H. Martini
    K.J. Swanepoel
    G. Weiss
    [J]. Journal of Optimization Theory and Applications, 2002, 115 : 283 - 314
  • [6] The Fermat-Torricelli problem in normed planes and spaces
    Martini, H
    Swanepoel, KJ
    Weiss, G
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 115 (02) : 283 - 314
  • [7] ON BISECTORS IN NORMED PLANES
    Jahn, Thomas
    Spirova, Margarita
    [J]. CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2015, 10 (02) : 1 - 9
  • [8] On Zindler Curves in Normed Planes
    Martini, Horst
    Wu, Senlin
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 767 - 773
  • [9] Concepts of curvatures in normed planes
    Balestro, Vitor
    Martini, Horst
    Shonoda, Emad
    [J]. EXPOSITIONES MATHEMATICAE, 2019, 37 (04) : 347 - 381
  • [10] On Reduced Triangles in Normed Planes
    Alonso, Javier
    Martini, Horst
    Spirova, Margarita
    [J]. RESULTS IN MATHEMATICS, 2013, 64 (3-4) : 269 - 288