Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

被引:46
|
作者
Di Noia, A. [1 ]
Hasekamp, O. P. [1 ]
van Harten, G. [2 ]
Rietjens, J. H. H. [1 ]
Smit, J. M. [1 ]
Snik, F. [2 ]
Henzing, J. S. [3 ]
de Boer, J. [2 ]
Keller, C. U. [2 ]
Volten, H. [4 ]
机构
[1] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands
[2] Leiden Univ, Leiden Observ, NL-2333 CA Leiden, Netherlands
[3] Netherlands Org Appl Res TNO, NL-3584 CB Utrecht, Netherlands
[4] Natl Inst Publ Hlth & Environm RIVM, NL-3721 MA Bilthoven, Netherlands
关键词
VECTOR RADIATIVE-TRANSFER; ATMOSPHERIC CONSTITUENTS; INVERSION ALGORITHM; OPTICAL-PROPERTIES; LAND SURFACES; VOLCANIC ASH; OCEAN; POLARIZATION; CLIMATE; NOISE;
D O I
10.5194/amt-8-281-2015
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval. By using the outcome of the neural network as first guess in the iterative retrieval scheme, the accuracy of the retrieved fine- and coarse-mode optical thickness is further improved, while for the other parameters the improvement is small or absent. The resulting scheme (neural network + iterative retrieval) is compared to the original one (look-up table + iterative retrieval) on a set of simulated ground-based measurements, and on a small set of real observations carried out by an accurate ground-based spectropolarimeter. The results show that the use of a neural-network-based first guess leads to an increase in the number of converging retrievals, and possibly to more accurate estimates of the aerosol effective radius and complex refractive index.
引用
收藏
页码:281 / 299
页数:19
相关论文
共 50 条
  • [1] Use of A Neural Network-Based Ocean Body Radiative Transfer Model for Aerosol Retrievals from Multi-Angle Polarimetric Measurements
    Fan, Cheng
    Fu, Guangliang
    Di Noia, Antonio
    Smit, Martijn
    Rietjens, Jeroen H. H.
    Ferrare, Richard A.
    Burton, Sharon
    Li, Zhengqiang
    Hasekamp, Otto P.
    [J]. REMOTE SENSING, 2019, 11 (23)
  • [2] Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations
    Segal-Rozenhaimer, Michal
    Miller, Daniel J.
    Knobelspiesse, Kirk
    Redemann, Jens
    Cairns, Brian
    Alexandrov, Mikhail D.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 220 : 39 - 51
  • [3] Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination
    Stap, F. A.
    Hasekamp, O. P.
    Rockmann, T.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (03) : 1287 - 1301
  • [4] Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument
    van Harten, G.
    de Boer, J.
    Rietjens, J. H. H.
    Di Noia, A.
    Snik, F.
    Volten, H.
    Smit, J. M.
    Hasekamp, O. P.
    Henzing, J. S.
    Keller, C. U.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (12) : 4341 - 4351
  • [5] Ground-based validation of the EOS Multi-angle Imaging SpectroRadiometer (MISR) aerosol retrieval algorithms and science data products
    Conel, JE
    Ledeboer, WC
    Pilorz, SH
    Martonchik, JV
    Kahn, R
    Abdou, W
    Bruegge, C
    Helmlinger, MC
    Gaitley, BJ
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1743 - 1748
  • [6] Design and experiment of ground-based agriculture-oriented multi-angle observation device
    [J]. Wang, X. (wangx@nercita.org.cn), 1600, Chinese Society of Agricultural Machinery (44):
  • [7] Retrieval of aerosol properties from in situ, multi-angle light scattering measurements using invertible neural networks
    Boiger, Romana
    Modini, Rob L.
    Moallemi, Alireza
    Degen, David
    Adelmann, Andreas
    Gysel-Beer, Martin
    [J]. Journal of Aerosol Science, 2022, 163
  • [8] Retrieval of aerosol properties from in situ, multi-angle light scattering measurements using invertible neural networks
    Boiger, Romana
    Modini, Rob L.
    Moallemi, Alireza
    Degen, David
    Adelmann, Andreas
    Gysel-Beer, Martin
    [J]. JOURNAL OF AEROSOL SCIENCE, 2022, 163
  • [9] Dust aerosol forward scattering effects on ground-based aerosol optical depth retrievals
    Ge, J. M.
    Su, J.
    Fu, Q.
    Ackerman, T. P.
    Huang, J. P.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2011, 112 (02): : 310 - 319
  • [10] APPLICATION OF GLOBAL OPTIMIZATION FOR RETRIEVALS FROM SYNTHETIC MULTI-ANGLE MEASUREMENTS
    Chuprov, Ivan
    Gao, Jiexing
    Efremenko, Dmitry
    Buzaev, Feodor
    [J]. LIGHT & ENGINEERING, 2024, 32 (03): : 11 - 19