Query refinement for Internet multimedia information retrieval using keywords and low-level features

被引:0
|
作者
Vadivel, A. [1 ]
Sural, Shamik [2 ]
Majumdar, A. K. [3 ]
机构
[1] Natl Inst Technol, Dept Comp Applicat, Tiruchirappalli, Tamil Nadu, India
[2] Sch Informat Technol, Indian Inst Technol, Kharagpur, W Bengal, India
[3] Indian Inst Technol, Dept Comp Sci & Engn, Kharagpur, W Bengal, India
关键词
D O I
10.1109/ICCIMA.2007.45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main obstacle in realizing semantic-based image retrieval is front the web that semantic description of an image is difficult to capture in low-level features. Text based keywords can be generated from web documents to capture semantic information for narrowing down the search space. We use an effective approach to integrate keywords, which is extracted from Web documents and low-level features such as color-texture features to take advantage of their complementing strengths. Experimental results show that the keywords can be replaced with low-level features for successful query refinement and improved precision of retrieval.
引用
收藏
页码:192 / +
页数:2
相关论文
共 50 条
  • [1] Multimodal Image Retrieval Based on Keywords and Low-Level Image Features
    Pobar, Miran
    Ivasic-Kos, Marina
    SEMANTIC KEYWORD-BASED SEARCH ON STRUCTURED DATA SOURCES, 2015, 9398 : 133 - 140
  • [2] Efficient Multimedia Information Retrieval with Query Level Fusion
    Sattari, Saeid
    Yazici, Adnan
    FLEXIBLE QUERY ANSWERING SYSTEMS 2015, 2016, 400 : 367 - 379
  • [3] Multimedia Indexing and Retrieval: Optimized Combination of Low-level and High-level Features
    Hamroun, Mohamed
    Nicolas, Henri
    Crespin, Benoit
    ICEIS: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS - VOL 1, 2022, : 194 - 202
  • [4] Using Query Reformulation and Keywords in the Geographic Information Retrieval Task
    Manuel Perea-Ortega, Jose
    Alfonso Urena-Lopez, L.
    Garcia-Vega, Manuel
    Angel Garcia-Cumbreras, Miguel
    EVALUATING SYSTEMS FOR MULTILINGUAL AND MULTIMODAL INFORMATION ACCESS, 2009, 5706 : 855 - 862
  • [5] Query refinement for multimedia similarity retrieval in MARS
    Porkaew, K
    Chakrabarti, K
    Mehrotra, S
    ACM MULTIMEDIA 99, PROCEEDINGS, 1999, : 235 - 238
  • [6] Multimodal query-level fusion for efficient multimedia information retrieval
    Sattari, Saeid
    Yazici, Adnan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2018, 33 (10) : 2019 - 2037
  • [7] Utilizing the correlation between query keywords for information retrieval
    Yoshida, T
    Shinkai, D
    Nishida, S
    ADVANCES IN WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2001, 2118 : 49 - 59
  • [8] Sternum image retrieval based on high-level semantic information and low-level features
    Chen, Qin
    Tai, Xiaoying
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 1, 2008, : 362 - 366
  • [9] Query Refinement into Information Retrieval Systems: An Overview
    Mosbah, Mawloud
    JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES, 2023, 47 (01) : 133 - 151
  • [10] Query and Feedback Technologies in Multimedia Information Retrieval
    Zha Z.
    Zheng X.
    1600, Science Press (54): : 1267 - 1280