Maximal-entropy random walks in complex networks with limited information

被引:87
|
作者
Sinatra, Roberta [1 ,2 ,3 ]
Gomez-Gardenes, Jesus [4 ,5 ]
Lambiotte, Renaud [6 ]
Nicosia, Vincenzo [1 ,2 ,3 ]
Latora, Vito [1 ,2 ,3 ]
机构
[1] Univ Catania, Dipartimento Fis & Astron, I-95123 Catania, Italy
[2] Ist Nazl Fis Nucl, I-95123 Catania, Italy
[3] Scuola Super Catania, Lab Sistemi Complessi, I-95123 Catania, Italy
[4] Univ Zaragoza, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
[5] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, E-50009 Zaragoza, Spain
[6] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
关键词
Entropy - Random processes;
D O I
10.1103/PhysRevE.83.030103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Maximization of the entropy rate is an important issue to design diffusion processes aiming at a well-mixed state. We demonstrate that it is possible to construct maximal-entropy random walks with only local information on the graph structure. In particular, we show that an almost maximal-entropy random walk is obtained when the step probabilities are proportional to a power of the degree of the target node, with an exponent a that depends on the degree-degree correlations and is equal to 1 in uncorrelated graphs.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Mean first-passage time for maximal-entropy random walks in complex networks
    Lin, Yuan
    Zhang, Zhongzhi
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [2] Mean first-passage time for maximal-entropy random walks in complex networks
    Yuan Lin
    Zhongzhi Zhang
    [J]. Scientific Reports, 4
  • [3] From unbiased to maximal-entropy random walks on hypergraphs
    Traversa, Pietro
    de Arruda, Guilherme Ferraz
    Moreno, Yamir
    [J]. PHYSICAL REVIEW E, 2024, 109 (05)
  • [4] Exact solution for statics and dynamics of maximal-entropy random walks on Cayley trees
    Ochab, J. K.
    Burda, Z.
    [J]. PHYSICAL REVIEW E, 2012, 85 (02):
  • [5] Maximal-entropy random walk unifies centrality measures
    Ochab, J. K.
    [J]. PHYSICAL REVIEW E, 2012, 86 (06):
  • [6] Entropy rate of random walks on complex networks under stochastic resetting
    Wang, Yating
    Chen, Hanshuang
    [J]. PHYSICAL REVIEW E, 2022, 106 (05)
  • [7] Random walks on complex networks
    Noh, JD
    Rieger, H
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (11) : 118701 - 1
  • [8] Dynamics of Nonlinear Random Walks on Complex Networks
    Skardal, Per Sebastian
    Adhikari, Sabina
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (04) : 1419 - 1444
  • [9] Dynamics of Nonlinear Random Walks on Complex Networks
    Per Sebastian Skardal
    Sabina Adhikari
    [J]. Journal of Nonlinear Science, 2019, 29 : 1419 - 1444
  • [10] Navigation by anomalous random walks on complex networks
    Tongfeng Weng
    Jie Zhang
    Moein Khajehnejad
    Michael Small
    Rui Zheng
    Pan Hui
    [J]. Scientific Reports, 6