On k-independence in graphs with emphasis on trees

被引:11
|
作者
Blidia, Mostafa
Chellali, Mustapha
Favaron, Odile
Meddah, Nacera
机构
[1] Univ Blida, Dept Math, Blida, Algeria
[2] Univ Paris 11, LRI, CNRS, UMR 8623, F-91405 Orsay, France
关键词
independence; k-independence; tree;
D O I
10.1016/j.disc.2006.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a graph G = (V, E) of order n and maximum degree Delta, a subset S of vertices is a k-independent set if the subgraph induced by S has maximum deffee less or equal to k - 1. The lower k-independence number i(k) (G) is the minimum cardinality of a maximal k-independent set in G and the k-independence number beta(k)(G) is the maximum cardinality of a k-independent set. We show that i(k) <= n - Delta + k - 1 for any graph and any k <= Delta, and i(2) <= n - Delta if G is connected, that beta(k) (T) >= kn / (k + 1) for any tree, and that i(2) <= (n + s)/2 <= beta(2) for any connected bipartite graph with s support vertices. Moreover, we characterize the trees satisfying i(2) = n - Delta, beta(k) = kn/(k + 1), i(2) = (n + s)/2 or beta(2) = (n + s)/2. (c) 2007 Elsevier B.V.. All rights reserved.
引用
收藏
页码:2209 / 2216
页数:8
相关论文
共 50 条
  • [1] Signed k-independence in graphs
    Volkmann, Lutz
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (03): : 517 - 528
  • [2] On the k-independence number of graphs
    Abiad, A.
    Coutinho, G.
    Fiol, M. A.
    DISCRETE MATHEMATICS, 2019, 342 (10) : 2875 - 2885
  • [3] On k-independence critical graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 53 : 289 - 298
  • [4] On the k-independence number in graphs
    Bouchou, Ahmed
    Blidia, Mostafa
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 59 : 311 - 322
  • [5] Optimal Graphs for Independence and k-Independence Polynomials
    J. I. Brown
    D. Cox
    Graphs and Combinatorics, 2018, 34 : 1445 - 1457
  • [6] Optimal Graphs for Independence and k-Independence Polynomials
    Brown, J. I.
    Cox, D.
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1445 - 1457
  • [7] New results on k-independence of graphs
    Kogan, Shimon
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [8] Signed total k-independence in graphs
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2017, 103 : 189 - 208
  • [9] Graphs with given k-independence number
    Wang, Zhao
    Cai, Junliang
    Mao, Yaping
    UTILITAS MATHEMATICA, 2018, 106 : 51 - 64
  • [10] Remarks on the complexity of signed k-independence on graphs
    Lee, Chuan-Min
    ARS COMBINATORIA, 2015, 123 : 303 - 315