Atlantic dominance of the meridional overturning circulation

被引:50
|
作者
de Boer, A. M. [1 ]
Toggweiler, J. R. [2 ]
Sigman, D. M. [3 ]
机构
[1] Princeton Univ, Cooperat Inst Climate Sci, Princeton, NJ USA
[2] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
[3] Princeton Univ, Dept Geosci, Princeton, NJ USA
关键词
D O I
10.1175/2007JPO3731.1
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
North Atlantic (NA) deep-water formation and the resulting Atlantic meridional overturning cell is generally regarded as the primary feature of the global overturning circulation and is believed to be a result of the geometry of the continents. Here, instead, the overturning is viewed as a global energy-driven system and the robustness of NA dominance is investigated within this framework. Using an idealized geometry ocean general circulation model coupled to an energy moisture balance model, various climatic forcings are tested for their effect on the strength and structure of the overturning circulation. Without winds or a high vertical diffusivity, the ocean does not support deep convection. A supply of mechanical energy through winds or mixing (purposefully included or due to numerical diffusion) starts the deep-water formation. Once deep convection and overturning set in, the distribution of convection centers is determined by the relative strength of the thermal and haline buoyancy forcing. In the most thermally dominant state (i.e., negligible salinity gradients), strong convection is shared among the NA, North Pacific (NP), and Southern Ocean (SO), while near the haline limit, convection is restricted to the NA. The effect of a more vigorous hydrological cycle is to produce stronger salinity gradients, favoring the haline state of NA dominance. In contrast, a higher mean ocean temperature will increase the importance of temperature gradients because the thermal expansion coefficient is higher in a warm ocean, leading to the thermally dominated state. An increase in SO winds or global winds tends to weaken the salinity gradients, also pushing the ocean to the thermal state. Paleoobservations of more distributed sinking in warmer climates in the past suggest that mean ocean temperature and winds play a more important role than the hydrological cycle in the overturning circulation over long time scales.
引用
收藏
页码:435 / 450
页数:16
相关论文
共 50 条
  • [1] The South Atlantic and the Atlantic Meridional Overturning Circulation
    Garzoli, Silvia L.
    Matano, Ricardo
    [J]. DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2011, 58 (17-18) : 1837 - 1847
  • [2] THE ATLANTIC MERIDIONAL OVERTURNING CIRCULATION IS NOT COLLAPSING
    Parker, Albert
    Ollier, Clifford
    [J]. QUAESTIONES GEOGRAPHICAE, 2021, 40 (03) : 163 - 167
  • [3] Measuring the Atlantic Meridional Overturning Circulation
    Perez, Renellys C.
    Baringer, Molly O.
    Dong, Shenfu
    Garzoli, Silvia L.
    Goes, Marlos
    Goni, Gustavo J.
    Lumpkin, Rick
    Meinen, Christopher S.
    Msadek, Rym
    Rivero, Ulises
    [J]. MARINE TECHNOLOGY SOCIETY JOURNAL, 2015, 49 (02) : 167 - 177
  • [4] Monitoring the Atlantic meridional overturning circulation
    Rayner, Darren
    Hirschi, Joel J. -M.
    Kanzow, Torsten
    Johns, William E.
    Wright, Paul G.
    Frajka-Williams, Eleanor
    Bryden, Harry L.
    Meinen, Christopher S.
    Baringer, Molly O.
    Marotzke, Jochem
    Beal, Lisa M.
    Cunningham, Stuart A.
    [J]. DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2011, 58 (17-18) : 1744 - 1753
  • [5] On the stability of the Atlantic meridional overturning circulation
    Hofmann, Matthias
    Rahmstorf, Stefan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (49) : 20584 - 20589
  • [6] Meridional coherence of the North Atlantic meridional overturning circulation
    Bingham, Rory J.
    Hughes, Chris W.
    Roussenov, Vassil
    Williams, Richard G.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (23)
  • [7] Greenland Melt and the Atlantic Meridional Overturning Circulation
    Frajka-Williams, Eleanor
    Bamber, Jonathan L.
    Vage, Kjetil
    [J]. OCEANOGRAPHY, 2016, 29 (04) : 22 - 33
  • [8] The stability of an evolving Atlantic meridional overturning circulation
    Liu, Wei
    Liu, Zhengyu
    Hu, Aixue
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (08) : 1562 - 1568
  • [9] On the driving processes of the Atlantic meridional overturning circulation
    Kuhlbrodt, T.
    Griesel, A.
    Montoya, M.
    Levermann, A.
    Hofmann, M.
    Rahmstorf, S.
    [J]. REVIEWS OF GEOPHYSICS, 2007, 45 (01)
  • [10] On freshwater fluxes and the Atlantic meridional overturning circulation
    Cael, B. B.
    Jansen, Malte F.
    [J]. LIMNOLOGY AND OCEANOGRAPHY LETTERS, 2020, 5 (02) : 185 - 192