ON SUPERSPECIAL ABELIAN SURFACES OVER FINITE FIELDS

被引:0
|
作者
Xue, Jiangwei [1 ]
Yang, Tse-Chung [2 ]
Yu, Chia-Fu [3 ,4 ]
机构
[1] Wuhan Univ, Collaborat Innovat CtrMath, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Acad Sinica, Inst Math, Astron Math Bldg 6F,1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[3] Acad Sinica, Inst Math, Astro Math Bldg 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[4] NCTS, Astro Math Bldg 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
来源
DOCUMENTA MATHEMATICA | 2016年 / 21卷
关键词
supersingular abelian surfaces; class number formula; Galois cohomology; CLASS-NUMBER; VARIETIES; ALGEBRAS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish a new lattice description for superspecial abelian varieties over a finite field F-q of q = p(a) elements. Our description depends on the parity of the exponent a of q. When q is an odd power of the prime p, we give an explicit formula for the number of superspecial abelian surfaces over F-q.
引用
收藏
页码:1607 / 1643
页数:37
相关论文
共 50 条
  • [1] On Superspecial abelian surfaces over finite fields III
    Jiangwei Xue
    Chia-Fu Yu
    Yuqiang Zheng
    Research in Number Theory, 2022, 8
  • [2] On Superspecial abelian surfaces over finite fields III
    Xue, Jiangwei
    Yu, Chia-Fu
    Zheng, Yuqiang
    RESEARCH IN NUMBER THEORY, 2022, 8 (01)
  • [3] On superspecial abelian surfaces over finite fields II
    Xue, Jiangwei
    Yang, Tse-Chung
    Yu, Chia-Fu
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2020, 72 (01) : 303 - 331
  • [4] Superspecial abelian varieties over finite prime fields
    Yu, Chia-Fu
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (06) : 1418 - 1427
  • [5] Abelian surfaces over finite fields as Jacobians
    Maisner, D
    Nart, E
    Howe, EW
    EXPERIMENTAL MATHEMATICS, 2002, 11 (03) : 321 - 337
  • [6] Abelian surfaces over finite fields with prescribed groups
    David, Chantal
    Garton, Derek
    Scherr, Zachary
    Shankar, Arul
    Smith, Ethan
    Thompson, Lola
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 779 - 792
  • [7] The groups of points on abelian surfaces over finite fields
    Rybakov, Sergey
    ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY, 2012, 574 : 151 - 158
  • [8] JACOBIANS IN ISOGENY CLASSES OF ABELIAN SURFACES OVER FINITE FIELDS
    Howe, Everett W.
    Nar, Enric
    Ritzenthaler, Christophe
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (01) : 239 - 289
  • [9] ABELIAN SURFACES AND JACOBIAN VARIETIES OVER FINITE-FIELDS
    RUCK, HG
    COMPOSITIO MATHEMATICA, 1990, 76 (03) : 351 - 366