Emittance preservation in plasma-based accelerators with ion motion

被引:26
|
作者
Benedetti, C. [1 ]
Schroeder, C. B. [1 ]
Esarey, E. [1 ]
Leemans, W. P. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
来源
关键词
ELECTRON-ACCELERATORS; LINEAR COLLIDER; WAKEFIELD; PHYSICS;
D O I
10.1103/PhysRevAccelBeams.20.111301
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In a plasma-accelerator-based linear collider, the density of matched, low-emittance, high-energy particle bunches required for collider applications can be orders of magnitude above the background ion density, leading to ion motion, perturbation of the focusing fields, and, hence, to beam emittance growth. By analyzing the response of the background ions to an ultrahigh density beam, analytical expressions, valid for nonrelativistic ion motion, are derived for the transverse wakefield and for the final (i.e., after saturation) bunch emittance. Analytical results are validated against numerical modeling. Initial beam distributions are derived that are equilibrium solutions, which require head-to-tail bunch shaping, enabling emittance preservation with ion motion.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Modeling of emittance growth due to Coulomb collisions in plasma-based accelerators
    Zhao, Y.
    Lehe, R.
    Myers, A.
    Thevenet, M.
    Huebl, A.
    Schroeder, C. B.
    Vay, J. -L.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (11)
  • [2] Plasma electron contribution to beam emittance growth from Coulomb collisions in plasma-based accelerators
    Zhao, Y.
    Lehe, R.
    Myers, A.
    Thevenet, M.
    Huebl, A.
    Schroeder, C. B.
    Vay, J-L
    [J]. PHYSICS OF PLASMAS, 2022, 29 (10)
  • [3] Analytical model for the uncorrelated emittance evolution of externally injected beams in plasma-based accelerators
    Aschikhin, Alexander
    Mehrling, Timon Johannes
    de la Ossa, Alberto Martinez
    Osterhoff, Jens
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 909 : 414 - 418
  • [4] Plasma-based accelerators: then and now
    Joshi, C.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (10)
  • [5] Emittance preservation in advanced accelerators
    Lindstrom, C. A.
    Thevenet, M.
    [J]. JOURNAL OF INSTRUMENTATION, 2022, 17 (05)
  • [6] Emittance preservation in linear accelerators
    Minty, M
    [J]. HIGH QUALITY BEAMS, 2001, 592 : 118 - 162
  • [7] Characterization of plasma sources for plasma-based accelerators
    Arjmand, S.
    Alesini, D.
    Anania, M. P.
    Biagioni, A.
    Chiadroni, E.
    Cianchi, A.
    Di Giovenale, D.
    Di Pirro, G.
    Ferrario, M.
    Lollo, V
    Mostacci, A.
    Pellegrini, D.
    Pompili, R.
    Stella, A.
    Vaccarezza, C.
    Zigler, A.
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (09):
  • [8] Europe plans plasma-based accelerators
    Cartlidge, Edwin
    [J]. PHYSICS WORLD, 2020, 33 (02) : 11 - 11
  • [9] Radiative damping in plasma-based accelerators
    Kostyukov, I. Yu
    Nerush, E. N.
    Litvak, A. G.
    [J]. PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2012, 15 (11):
  • [10] Diagnostics for plasma-based electron accelerators
    Downer, M. C.
    Zgadzaj, R.
    Debus, A.
    Schramm, U.
    Kaluza, M. C.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (03)