Measurement of fine root production and turnover rate, the reciprocal of mean life span of a root population, is crucial to the understanding of the carbon cycle of an ecosystem as fine roots account for up to 30% of global terrestrial net primary production. Our goal was to characterize fine root production, mortality, standing crop, and turnover rate in a Mediterranean climate. Using simulations, we established that our sampling interval must be less than monthly to keep the turnover rate error to less than 10%. Adhering to this interval, we measured fine root turnover rate by mark-recapture modeling methods and compared predicted with observed turnover rates. The best selected model indicated that these rates were a function of diameter, length, soil temperature, and soil water content. Turnover rate increased with decreasing diameter and length and increasing soil temperature and soil water content. We found a yearly pattern of hysteresis between fine root production, mortality, and turnover rate relative to soil temperature. This was explained by soil temperature-moisture hysteresis using our best selected model. Production and turnover rate were greater in spring to early summer when both soil temperature and soil moisture were high, resulting in a seasonal variation of belowground net primary production. We suggest that this behavior could be a result of fine roots' strategy to cope with a limited growing season of a semiarid Mediterranean climate.