ENTROPIES FOR RADIALLY SYMMETRIC HIGHER-ORDER NONLINEAR DIFFUSION EQUATIONS

被引:0
|
作者
Bukal, Mario [1 ]
Juengel, Ansgar [1 ]
Matthes, Daniel [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Higher-order diffusion equations; thin-film equation; quantum diffusion model; polynomial decision problem; quantifier elimination; PARABOLIC EQUATION; FLUCTUATIONS; EXISTENCE; INTERFACE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A previously developed algebraic approach to proving entropy production inequalities is extended to deal with radially symmetric solutions for a class of higher-order diffusion equations in multiple space dimensions. In application of the method, novel a priori estimates are derived for the thin-film equation, the fourth-order Derrida-Lebowitz-Speer-Spohn equation, and a sixth-order quantum diffusion equation.
引用
收藏
页码:353 / 382
页数:30
相关论文
共 50 条