Improvement in credit card fraud detection using ensemble classification technique and user data

被引:3
|
作者
Al Rubaie, Evan Madhi Hamzh [1 ]
机构
[1] Univ Babylon, Coll Engn, Babylon, Iraq
关键词
Credit card transaction; Global dataset; User dataset; J48; K-means clustering; Random forest; Ensemble method;
D O I
10.22075/IJNAA.2021.5228
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Financial fraud is a serious problem in banking system. Credit card fraud is growing with increasing Internet usage, as it becomes very simple to collect user data and do fraud transaction. Fortunately, all records including fraud and legit transactions are present in the financial record. Improved data mining techniques are now capable to find solutions for such outlier detections. Financial data is freely available in many sources, but this data has some challenges like,l) the profile of legit and fraudulent behavior changes constantly, 2) there is a class imbalance problem in dataset, because less than 3% transaction are fraud, 3) transaction verification latency is also one more problem. All this data issues are handled using pre-processing techniques like cleaning and reduction. Main aim of this research is to find out, output attribute is Fraud', with better time complexity. To this end, K-means, Random Forest and J48 algorithm is used, and its accuracy rates are compared to find best fit pre-processing and machine learning algorithm. It is observed that accuracy rate of Random Forest is 93.8% when both global and local dataset is used.
引用
收藏
页码:1240 / 1265
页数:11
相关论文
共 50 条
  • [1] A stacking ensemble for credit card fraud detection using SMOTE technique
    Kurien, Kaithekuzhical Leena
    Chikkamannur, Ajeet A.
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2024, 15 (06) : 284 - 290
  • [2] Credit Card Fraud Detection Using Data Science Technique
    Jayakumar, D.
    Rose, R. Remya
    Kumar, P. Gangula Sudheer
    Vignesh, C. Bhuvan
    Bhupath, A. K.
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (02) : 7861 - 7866
  • [3] Credit card fraud detection using ensemble data mining methods
    Bakhtiari, Saeid
    Nasiri, Zahra
    Vahidi, Javad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 29057 - 29075
  • [4] Credit card fraud detection using ensemble data mining methods
    Saeid Bakhtiari
    Zahra Nasiri
    Javad Vahidi
    Multimedia Tools and Applications, 2023, 82 : 29057 - 29075
  • [5] Detection of Credit Card Fraud using a Hybrid Ensemble Model
    Saraf, Sayali
    Phakatkar, Anupama
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 464 - 474
  • [6] Ensemble Learning for Credit Card Fraud Detection
    Sohony, Ishan
    Pratap, Rameshwar
    Nambiar, Ullas
    PROCEEDINGS OF THE ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA (CODS-COMAD'18), 2018, : 289 - 294
  • [7] Ensemble Method for Credit Card Fraud Detection
    Wang, Rui
    Liu, Guanjun
    2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021), 2021, : 246 - 252
  • [8] A Deep Learning Ensemble With Data Resampling for Credit Card Fraud Detection
    Mienye, Ibomoiye Domor
    Sun, Yanxia
    IEEE ACCESS, 2023, 11 : 30628 - 30638
  • [9] Fraud Detection in Credit Card Transactions by using Classification Algorithms
    Devi, Vimala J.
    Kavitha, K. S.
    2017 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN COMPUTER, ELECTRICAL, ELECTRONICS AND COMMUNICATION (CTCEEC), 2017, : 125 - 131
  • [10] DETECTION OF CREDIT CARD FRAUD USING RESAMPLING AND BOOSTING TECHNIQUE
    Jose, Suni
    Devassy, Deepa
    Antony, Anly M.
    2023 ADVANCED COMPUTING AND COMMUNICATION TECHNOLOGIES FOR HIGH PERFORMANCE APPLICATIONS, ACCTHPA, 2023,