Schur-Weyl duality for tensor powers of the Burau representation

被引:3
|
作者
Doty, Stephen [1 ]
Giaquinto, Anthony [1 ]
机构
[1] Loyola Univ, Dept Math & Stat, Chicago, IL 60660 USA
关键词
PARTITION ALGEBRA; INFLATIONS;
D O I
10.1007/s40687-021-00282-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Artin's braid group B-n is generated by sigma(1), ... , sigma(n-1) subject to the relations sigma(i)sigma(i+1)sigma(i) = sigma(i+1)sigma(i)sigma(i+1), sigma(i)sigma(j) = sigma(j)sigma(i) if |i - j| > 1. For complex parameters q(1), q(2) such that q(1)q(2) not equal 0, the group B-n acts on the vector space E = Sigma(i) Ce-i with basis e(1), ... , e(n) by sigma(i) center dot e(i) = (q(1) + q(2))e(i) + q(1)ei(+1), sigma(i) center dot e(i+ 1) = -q(2)e(i), sigma(i) center dot e(j) = q(1)e(j) if j not equal i, i + 1. This representation is (a slight generalization of) the Burau representation. If q = -q(2)/q(1) is not a root of unity, we show that the algebra of all endomorphisms of E-circle times r commuting with the B-n-action is generated by the place-permutation action of the symmetric group S-r and the operator p(1), given by p(1)(e(j1) circle times e(j2) circle times ... e(jr)) = q(j1-1) Sigma(n)(i=1) e(i) circle times e(j2) circle times ... circle times e(jr). Equivalently, as a ( CBn, P'(r) ([n](q)))-bimodule, E-circle times r satisfies Schur-Weyl duality, where P'(r) ([n](q)) is a certain subalgebra of the partition algebra P-r ([n](q)) on 2r nodes with parameter [n](q) = 1 + q+ ... + q(n-1), isomorphic to the semigroup algebra of the "rook monoid" studied by W. D. Munn, L. Solomon, and others.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Schur–Weyl duality for tensor powers of the Burau representation
    Stephen Doty
    Anthony Giaquinto
    Research in the Mathematical Sciences, 2021, 8
  • [2] Quantized mixed tensor space and Schur-Weyl duality
    Dipper, Richard
    Doty, Stephen
    Stoll, Friederike
    ALGEBRA & NUMBER THEORY, 2013, 7 (05) : 1121 - 1146
  • [3] Schur-Weyl duality and categorification
    Brundan, Jonathan
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 51 - 70
  • [4] Imaginary Schur-Weyl Duality
    Kleshchev, Alexander
    Muth, Robert
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 245 (1157) : VII - +
  • [5] Higher representation theory and quantum affine Schur-Weyl duality
    Kang, Seok-Jin
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 179 - 201
  • [6] Schur-Weyl Duality for Deligne Categories
    Aizenbud, Inna Entova
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (18) : 8959 - 9060
  • [7] Schur-Weyl duality for higher levels
    Brundan, Jonathan
    Kleshchev, Alexander
    SELECTA MATHEMATICA-NEW SERIES, 2008, 14 (01): : 1 - 57
  • [8] New versions of Schur-Weyl duality
    Doty, S
    FINITE GROUPS 2003, 2005, : 59 - 71
  • [9] A New Generalized Schur-Weyl Duality
    Qiang Lei
    Haijiang Yu
    Junde Wu
    International Journal of Theoretical Physics, 2015, 54 : 4034 - 4040
  • [10] Schur-Weyl Duality for Twin Groups
    Doty, Stephen
    Giaquinto, Anthony
    TRANSFORMATION GROUPS, 2024, 29 (02) : 621 - 645