On some spectral properties of large self-dual dilute quaternion random matrices

被引:0
|
作者
Ding, Xue [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130023, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2015年 / 63卷 / 09期
基金
中国国家自然科学基金;
关键词
60F15; 15B52; 15A18; 60F05; random matrix; dilute; quaternion; spectral analysis; DENSITY-OF-STATES;
D O I
10.1080/03081087.2014.972392
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the spectral properties of the large self-dual dilute quaternion random matrices. For the dilute case, we prove that the empirical spectral distribution still converges to the semicircular law with some appropriate normalization. Further, we obtain the limits of the extreme eigenvalues of the large self-dual dilute quaternion random matrices under some moment assumptions of the underlying distributions and give a necessary condition for the strong convergence of the extreme eigenvalues.
引用
收藏
页码:1737 / 1749
页数:13
相关论文
共 50 条