Enhancing thermoelectric performance of FeNbSb half-Heusler compound by Hf-Ti dual-doping

被引:57
|
作者
Shen, Jiajun [1 ]
Fu, Chenguang [1 ]
Liu, Yintu [1 ]
Zhao, Xinbing [1 ]
Zhu, Tiejun [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Thermoelectric material; Dual-doping; Lattice thermal conductivity; Phonon scattering; FIGURE; MERIT; DEFECTS; ZRNISN; BAND;
D O I
10.1016/j.ensm.2017.07.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
FeNbSb half-Heusler compound has recently been identified as a promising high temperature thermoelectric material for power generation with figure of merit zT > 1. Single doping is a general and effective way to simultaneously adjust the electrical power factor and reduce the lattice thermal conductivity in this system. Here we report the enhanced thermoelectric performance of FeNb0.9-xHf0.1TixSb ( 0 <= x <= 0.1) by Hf-Ti dual-doping, which shows a maximum figure of merit zT of 1.32 at 1200 K. Hf-Ti dual-doping significantly reduces lattice thermal conductivity. A reduction of 30% was obtained at room temperature for the FeNb0.84Hf0.1Ti0.06Sb sample, compared with the single Ti-doped FeNbSb sample. The reduction of the lattice thermal conductivity in the Hf-Ti dual-doped FeNbSb compounds was attributed to both mass and strain field fluctuations.
引用
收藏
页码:69 / 74
页数:6
相关论文
共 50 条
  • [1] Optimizing the thermoelectric performance of FeVSb half-Heusler compound via Hf-Ti double doping
    El-Khouly, A.
    Novitskii, A.
    Serhiienko, I
    Kalugina, A.
    Sedegov, A.
    Karpenkov, D.
    Voronin, A.
    Khovaylo, V
    Adam, A. M.
    JOURNAL OF POWER SOURCES, 2020, 477
  • [2] Effects of spark plasma sintering on enhancing the thermoelectric performance of Hf-Ti doped VFeSb half-Heusler alloys
    El-Khouly, A.
    Adam, A. M.
    Novitskii, A.
    Ibrahim, E. M. M.
    Serhiienko, I
    Nafady, Ayman
    Kutzhanov, M. K.
    Karpenkov, D.
    Voronin, A.
    Khovaylo, V
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 150
  • [3] Sn Doped FeNbSb Half-Heusler Compounds for Tuning Thermoelectric Performance
    Luo Yue
    Shuqi Zheng
    Wenlin Cui
    Teng Fang
    Lijun Wang
    Pengpeng Bai
    Liqiang Chen
    Journal of Electronic Materials, 2020, 49 : 2862 - 2871
  • [4] Sn Doped FeNbSb Half-Heusler Compounds for Tuning Thermoelectric Performance
    Yue, Luo
    Zheng, Shuqi
    Cui, Wenlin
    Fang, Teng
    Wang, Lijun
    Bai, Pengpeng
    Chen, Liqiang
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (05) : 2862 - 2871
  • [5] Enhancing Thermoelectric Performance of TiNiSn Half-Heusler Compounds via Modulation Doping
    Berry, Tanya
    Fu, Chenguang
    Auffermann, Gudrun
    Fecher, Gerhard H.
    Schnelle, Walter
    Serrano-Sanchez, Federico
    Yue, Yuan
    Liang, Hong
    Felser, Claudia
    CHEMISTRY OF MATERIALS, 2017, 29 (16) : 7042 - 7048
  • [6] LaPtSb: a half-Heusler compound with high thermoelectric performance
    Xue, Q. Y.
    Liu, H. J.
    Fan, D. D.
    Cheng, L.
    Zhao, B. Y.
    Shi, J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (27) : 17912 - 17916
  • [7] Thermoelectric performance of multiphase XNiSn (X = Ti, Zr, Hf) half-Heusler alloys
    Downie, R. A.
    MacLaren, D. A.
    Bos, J. -W. G.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (17) : 6107 - 6114
  • [8] Enhanced Thermoelectric Properties of Hf doped Half-Heusler Compound NbFeSb
    Kumar, Narender
    Saini, Hardev S.
    Nisha
    Singh, Mukhtiyar
    Kashyap, Manish K.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [9] Optimization of the thermoelectric properties of FeNbSb-based half-Heusler materials
    Li, Wenfeng
    Yang, Gui
    Zhang, Jianwei
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (19)
  • [10] Thermoelectric properties of the half-Heusler compound (Zr,Hf)(Ni,Pd)Sn
    Browning, VM
    Poon, SJ
    Tritt, TM
    Pope, AL
    Bhattacharya, S
    Volkov, P
    Song, JG
    Ponnambalam, V
    Ehrlich, AC
    THERMOELECTRIC MATERIALS 1998 - THE NEXT GENERATION MATERIALS FOR SMALL-SCALE REFRIGERATION AND POWER GENERATION APPLICATIONS, 1999, 545 : 403 - 412